ﻻ يوجد ملخص باللغة العربية
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $Hin (0,1)$. We establish strong well-posedness under a variety of assumptions on the drift; these include the choice $$B(cdot,mu) = fastmu(cdot) + g(cdot),quad f,gin B^alpha_{infty,infty}, quad alpha>1-1/2H,$$ thus extending the results by Catellier and Gubinelli [9] to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.
We study distribution dependent stochastic differential equation driven by a continuous process, without any specification on its law, following the approach initiated in [16]. We provide several criteria for existence and uniqueness of solutions whi
Sufficient and necessary conditions are presented for the comparison theorem of path dependent $G$-SDEs. Different from the corresponding study in path independent $G$-SDEs, a probability method is applied to prove these results. Moreover, the results extend the ones in the linear expectation case.
In this paper, we build the equivalence between rough differential equations driven by the lifted $G$-Brownian motion and the corresponding Stratonovich type SDE through the Wong-Zakai approximation. The quasi-surely convergence rate of Wong-Zakai ap
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, wher
This paper is devoted to studying the properties of the exit times of stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs). In particular, we prove that the exit times of $G$-SDEs has the quasi-continuity property. As an applica