ﻻ يوجد ملخص باللغة العربية
This paper is devoted to studying the properties of the exit times of stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs). In particular, we prove that the exit times of $G$-SDEs has the quasi-continuity property. As an application, we give a probabilistic representation for a large class of fully nonlinear elliptic equations with Dirichlet boundary.
Sufficient and necessary conditions are presented for the comparison theorem of path dependent $G$-SDEs. Different from the corresponding study in path independent $G$-SDEs, a probability method is applied to prove these results. Moreover, the results extend the ones in the linear expectation case.
In this paper, we build the equivalence between rough differential equations driven by the lifted $G$-Brownian motion and the corresponding Stratonovich type SDE through the Wong-Zakai approximation. The quasi-surely convergence rate of Wong-Zakai ap
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, wher
In this paper, we study the doubly reflected backward stochastic differential equations driven by G-Brownian motion. We show that the solution can be constructed by a family of penalized reflected G-BSDEs with a lower obstacle. The advantage of this
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $Hin (0,1)$. We establish strong well-posedness under a variety of as