ترغب بنشر مسار تعليمي؟ اضغط هنا

First Constraints on Light Axions from the Binary Neutron Star Gravitational Wave Event GW170817

110   0   0.0 ( 0 )
 نشر من قبل Jun Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light axion fields, if they exist, can be sourced by neutron stars due to their coupling to nuclear matter, and play a role in binary neutron star mergers. We report on a search for such axions by analysing the gravitational waves from the binary neutron star inspiral GW170817. We find no evidence of axions in the sampled parameter space. The null result allows us to impose constraints on axions with masses below $10^{-11} {rm eV}$ by excluding the ones with decay constants ranging from $1.6times10^{16} {rm GeV}$ to $10^{18} {rm GeV}$ at $3sigma$ confidence level. Our analysis provides the first constraints on axions from neutron star inspirals, and rules out a large region in parameter space that has not been probed by the existing experiments.



قيم البحث

اقرأ أيضاً

Binary neutron star mergers are rich laboratories for physics, accessible with ground-based interferometric gravitational-wave detectors such as the Advanced LIGO and Advanced Virgo. If a neutron star remnant survives the merger, it can emit gravitat ional waves that might be detectable with the current or next generation detectors. The physics of the long-lived post-merger phase is not well understood and makes modelling difficult. In particular the phase of the gravitational-wave signal is not well modelled. In this paper, we explore methods for using long duration post-merger gravitational-wave signals to constrain the parameters and the properties of the remnant. We develop a phase-agnostic likelihood model that uses only the spectral content for parameter estimation and demonstrate the calculation of a Bayesian upper limit in the absence of a signal. With the millisecond magnetar model, we show that for an event like GW170817, the ellipticity of a long-lived remnant can be constrained to less than about 0.5 in the parameter space used.
We present a rapid analytic framework for predicting kilonova light curves following neutron star (NS) mergers, where the main input parameters are binary-based properties measurable by gravitational wave detectors (chirp mass and mass ratio, orbital inclination) and properties dependent on the nuclear equation of state (tidal deformability, maximum NS mass). This enables synthesis of a kilonova sample for any NS source population, or determination of the observing depth needed to detect a live kilonova given gravitational wave source parameters in low latency. We validate this code, implemented in the public MOSFiT package, by fitting it to GW170817. A Bayes factor analysis overwhelmingly ($B>10^{10}$) favours the inclusion of an additional luminosity source in addition to lanthanide-poor dynamical ejecta during the first day. This is well fit by a shock-heated cocoon model, though differences in the ejecta structure, opacity or nuclear heating rate cannot be ruled out as alternatives. The emission thereafter is dominated by a lanthanide-rich viscous wind. We find the mass ratio of the binary is $q=0.92pm0.07$ (90% credible interval). We place tight constraints on the maximum stable NS mass, $M_{rm TOV}=2.17^{+0.08}_{-0.11}$ M$_odot$. For a uniform prior in tidal deformability, the radius of a 1.4 M$_odot$ NS is $R_{1.4}sim 10.7$ km. Re-weighting with a prior based on equations of state that support our credible range in $M_{rm TOV}$, we derive a final measurement $R_{1.4}=11.06^{+1.01}_{-0.98}$ km. Applying our code to the second gravitationally-detected neutron star merger, GW190425, we estimate that an associated kilonova would have been fainter (by $sim0.7$ mag at one day post-merger) and declined faster than GW170817, underlining the importance of tuning follow-up strategies individually for each GW-detected NS merger.
90 - Tuhin Malik , N. Alam , M. Fortin 2018
Constraints set on key parameters of the nuclear matter equation of state (EoS) by the values of the tidal deformability, inferred from GW170817, are examined by using a diverse set of relativistic and non-relativistic mean field models. These models are consistent with bulk properties of finite nuclei as well as with the observed lower bound on the maximum mass of neutron star $sim 2 ~ {rm M}_odot$. The tidal deformability shows a strong correlation with specific linear combinations of the isoscalar and isovector nuclear matter parameters associated with the EoS. Such correlations suggest that a precise value of the tidal deformability can put tight bounds on several EoS parameters, in particular, on the slope of the incompressibility and the curvature of the symmetry energy. The tidal deformability obtained from the GW170817 and its UV/optical/infrared counterpart sets the radius of a canonical $1.4~ {rm M}_{odot}$ neutron star to be $11.82leqslant R_{1.4}leqslant13.72$ km.
We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distri bution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complimentary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of a non-detection of a post-merger signal following a binary neutron star inspiral we show that we can place upper limits on the energy emitted.
The oscillations of a merger remnant forming after the coalescence of two neutron stars are very characteristic for the high-density equation of state. The dominant oscillation frequency occurs as a pronounced peak in the kHz range of the gravitation al-wave spectrum. We describe how the dominant oscillation frequency of the remnant can be employed to infer the radii of non-rotating neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا