ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring the post-merger gravitational wave emission from binary neutron star coalescences

88   0   0.0 ( 0 )
 نشر من قبل Katerina Chatziioannou
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complimentary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of a non-detection of a post-merger signal following a binary neutron star inspiral we show that we can place upper limits on the energy emitted.



قيم البحث

اقرأ أيضاً

Extending previous work by a number of authors, we have recently presented a new approach in which the detection of gravitational waves from merging neutron star binaries can be used to determine the equation of state of matter at nuclear density and hence the structure of neutron stars. In particular, after performing a large number of numerical-relativity simulations of binaries with nuclear equations of state, we have found that the post-merger emission is characterized by two distinct and robust spectral features. While the high-frequency peak was already shown to be associated with the oscillations of the hypermassive neutron star produced by the merger and to depend on the equation of state, we have highlighted that the low-frequency peak is related to the merger process and to the total compactness of the stars in the binary. This relation is essentially universal and provides a powerful tool to set tight constraints on the equation of state. We here provide additional information on the extensive analysis performed, illustrating the methods used, the tests considered, as well as the robustness of the results. We also discuss additional relations that can be deduced when exploring the data and how these correlate with various properties of the binary. Finally, we present a simple mechanical toy model that explains the main spectral features of the post-merger signal and can even reproduce analytically the complex waveforms emitted right after the merger.
Accurate gravitational-wave (GW) signal models exist for black hole binary (BBH) and neutron-star binary (BNS) systems, which are consistent with all of the published GW observations to date. Detections of a third class of compact-binary systems, neu tron-star black hole (NSBH) binaries, have not yet been confirmed, but are eagerly awaited in the near future. For NSBH systems, GW models do not exist across the viable parameter space of signals. In this work we present the frequency-domain phenomenological model, PhenomNSBH, for GWs produced by NSBH systems with mass ratios from equal-mass up to 15, spin on the black hole up to a dimensionless spin of $|chi|=0.5$, and tidal deformabilities ranging from 0 (the BBH limit) to 5000. We extend previous work on a phenomenological amplitude model for NSBH systems to produce an amplitude model that is parameterized by a single tidal deformability parameter. This amplitude model is combined with an analytic phase model describing tidal corrections. The resulting approximant is compared to publicly-available NSBH numerical-relativity simulations and hybrid waveforms constructed from numerical-relativity simulations and tidal inspiral approximants. For most signals observed by second-generation ground-based detectors, it will be difficult to use the GW signal alone to distinguish single NSBH systems from either BNSs or BBHs, and therefore to unambiguously identify an NSBH system.
The gravitational-wave GW170817 is associated to the inspiral phase of a binary neutron star coalescence event. The LIGO-Virgo detectors sensitivity at high frequencies was not sufficient to detect the signal corresponding to the merger and post-merg er phases. Hence, the question whether the merger outcome was a prompt black hole formation or not must be answered using either the pre-merger gravitational wave signal or electromagnetic counterparts. In this work we present two methods to infer the probability of prompt black hole formation, using the analysis of the inspiral gravitational-wave signal. Both methods combine the posterior distribution from the gravitational-wave data analysis with numerical relativity results. One method relies on the use of phenomenological models for the equation of state and on the estimate of the collapse threshold mass. The other is based on the estimate of the tidal polarizability parameter $tilde{Lambda}$ that is correlated in an equation-of-state agnostic way with the prompt BH formation. We analyze GW170817 data and find that the two methods consistently predict a probability of ~ 50-70% for prompt black-hole formation, which however may significantly decrease below 10% if the maximum mass constraint from PSR J0348+0432 or PSR J0740+6620 is imposed.
The oscillations of a merger remnant forming after the coalescence of two neutron stars are very characteristic for the high-density equation of state. The dominant oscillation frequency occurs as a pronounced peak in the kHz range of the gravitation al-wave spectrum. We describe how the dominant oscillation frequency of the remnant can be employed to infer the radii of non-rotating neutron stars.
Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O(20) sources would suffice to distinguish between a hard, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOS and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا