ترغب بنشر مسار تعليمي؟ اضغط هنا

Chhoyhopper: A Moving Target Defense with IPv6

101   0   0.0 ( 0 )
 نشر من قبل Asm Rizvi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Services on the public Internet are frequently scanned, then subject to brute-force and denial-of-service attacks. We would like to run such services stealthily, available to friends but hidden from adversaries. In this work, we propose a moving target defense named Chhoyhopper that utilizes the vast IPv6 address space to conceal publicly available services. The client and server to hop to different IPv6 addresses in a pattern based on a shared, pre-distributed secret and the time-of-day. By hopping over a /64 prefix, services cannot be found by active scanners, and passively observed information is useless after two minutes. We demonstrate our system with SSH, and show that it can be extended to other applications.



قيم البحث

اقرأ أيضاً

Moving Target Defense (MTD) has emerged as a newcomer into the asymmetric field of attack and defense, and shuffling-based MTD has been regarded as one of the most effective ways to mitigate DDoS attacks. However, previous work does not acknowledge t hat frequent shuffles would significantly intensify the overhead. MTD requires a quantitative measure to compare the cost and effectiveness of available adaptations and explore the best trade-off between them. In this paper, therefore, we propose a new cost-effective shuffling method against DDoS attacks using MTD. By exploiting Multi-Objective Markov Decision Processes to model the interaction between the attacker and the defender, and designing a cost-effective shuffling algorithm, we study the best trade-off between the effectiveness and cost of shuffling in a given shuffling scenario. Finally, simulation and experimentation on an experimental software defined network (SDN) indicate that our approach imposes an acceptable shuffling overload and is effective in mitigating DDoS attacks.
Reactive defense mechanisms, such as intrusion detection systems, have made significant efforts to secure a system or network for the last several decades. However, the nature of reactive security mechanisms has limitations because potential attacker s cannot be prevented in advance. We are facing a reality with the proliferation of persistent, advanced, intelligent attacks while defenders are often way behind attackers in taking appropriate actions to thwart potential attackers. The concept of moving target defense (MTD) has emerged as a proactive defense mechanism aiming to prevent attacks. In this work, we conducted a comprehensive, in-depth survey to discuss the following aspects of MTD: key roles, design principles, classifications, common attacks, key methodologies, important algorithms, metrics, evaluation methods, and application domains. We discuss the pros and cons of all aspects of MTD surveyed in this work. Lastly, we highlight insights and lessons learned from this study and suggest future work directions. The aim of this paper is to provide the overall trends of MTD research in terms of critical aspects of defense systems for researchers who seek for developing proactive, adaptive MTD mechanisms.
Moving target defense (MTD) techniques that enable a system to randomize its configuration to thwart prospective attacks are an effective security solution for tomorrows wireless networks. However, there is a lack of analytical techniques that enable one to quantify the benefits and tradeoffs of MTDs. In this paper, a novel approach for implementing MTD techniques that can be used to randomize cryptographic techniques and keys in wireless networks is proposed. In particular, the problem is formulated as a stochastic game in which a base station (BS), acting as a defender seeks to strategically change its cryptographic techniques and keys in an effort to deter an attacker that is trying to eavesdrop on the data. The game is shown to exhibit a single-controller property in which only one player, the defender, controls the state of the game. For this game, the existence and properties of the Nash equilibrium are studied, in the presence of a defense cost for using MTD. Then, a practical algorithm for deriving the equilibrium MTD strategies is derived. Simulation results show that the proposed game-theoretic MTD framework can significantly improve the overall utility of the defender, while enabling effective randomization over cryptographic techniques.
With the boom of edge intelligence, its vulnerability to adversarial attacks becomes an urgent problem. The so-called adversarial example can fool a deep learning model on the edge node to misclassify. Due to the property of transferability, the adve rsary can easily make a black-box attack using a local substitute model. Nevertheless, the limitation of resource of edge nodes cannot afford a complicated defense mechanism as doing on the cloud data center. To overcome the challenge, we propose a dynamic defense mechanism, namely EI-MTD. It first obtains robust member models with small size through differential knowledge distillation from a complicated teacher model on the cloud data center. Then, a dynamic scheduling policy based on a Bayesian Stackelberg game is applied to the choice of a target model for service. This dynamic defense can prohibit the adversary from selecting an optimal substitute model for black-box attacks. Our experimental result shows that this dynamic scheduling can effectively protect edge intelligence against adversarial attacks under the black-box setting.
74 - Ali Borji 2020
I introduce a very simple method to defend against adversarial examples. The basic idea is to raise the slope of the ReLU function at the test time. Experiments over MNIST and CIFAR-10 datasets demonstrate the effectiveness of the proposed defense ag ainst a number of strong attacks in both untargeted and targeted settings. While perhaps not as effective as the state of the art adversarial defenses, this approach can provide insights to understand and mitigate adversarial attacks. It can also be used in conjunction with other defenses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا