ﻻ يوجد ملخص باللغة العربية
Reactive defense mechanisms, such as intrusion detection systems, have made significant efforts to secure a system or network for the last several decades. However, the nature of reactive security mechanisms has limitations because potential attackers cannot be prevented in advance. We are facing a reality with the proliferation of persistent, advanced, intelligent attacks while defenders are often way behind attackers in taking appropriate actions to thwart potential attackers. The concept of moving target defense (MTD) has emerged as a proactive defense mechanism aiming to prevent attacks. In this work, we conducted a comprehensive, in-depth survey to discuss the following aspects of MTD: key roles, design principles, classifications, common attacks, key methodologies, important algorithms, metrics, evaluation methods, and application domains. We discuss the pros and cons of all aspects of MTD surveyed in this work. Lastly, we highlight insights and lessons learned from this study and suggest future work directions. The aim of this paper is to provide the overall trends of MTD research in terms of critical aspects of defense systems for researchers who seek for developing proactive, adaptive MTD mechanisms.
Services on the public Internet are frequently scanned, then subject to brute-force and denial-of-service attacks. We would like to run such services stealthily, available to friends but hidden from adversaries. In this work, we propose a moving targ
Moving target defense (MTD) techniques that enable a system to randomize its configuration to thwart prospective attacks are an effective security solution for tomorrows wireless networks. However, there is a lack of analytical techniques that enable
Moving Target Defense (MTD) has emerged as a newcomer into the asymmetric field of attack and defense, and shuffling-based MTD has been regarded as one of the most effective ways to mitigate DDoS attacks. However, previous work does not acknowledge t
In social networks, by removing some target-sensitive links, privacy protection might be achieved. However, some hidden links can still be re-observed by link prediction methods on observable networks. In this paper, the conventional link prediction
With the boom of edge intelligence, its vulnerability to adversarial attacks becomes an urgent problem. The so-called adversarial example can fool a deep learning model on the edge node to misclassify. Due to the property of transferability, the adve