ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Checking Finite-Horizon Markov Chains with Probabilistic Inference

88   0   0.0 ( 0 )
 نشر من قبل Sebastian Junges
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the symbolic verification of Markov chains with respect to finite horizon reachability properties. The prevalent approach iteratively computes step-bounded state reachability probabilities. By contrast, recent advances in probabilistic inference suggest symbolically representing all horizon-length paths through the Markov chain. We ask whether this perspective advances the state-of-the-art in probabilistic model checking. First, we formally describe both approaches in order to highlight their key differences. Then, using these insights we develop Rubicon, a tool that transpiles Prism models to the probabilistic inference tool Dice. Finally, we demonstrate better scalability compared to probabilistic model checkers on selected benchmarks. All together, our results suggest that probabilistic inference is a valuable addition to the probabilistic model checking portfolio -- with Rubicon as a first step towards integrating both perspectives.



قيم البحث

اقرأ أيضاً

Parametric Markov chains occur quite naturally in various applications: they can be used for a conservative analysis of probabilistic systems (no matter how the parameter is chosen, the system works to specification); they can be used to find optimal settings for a parameter; they can be used to visualise the influence of system parameters; and they can be used to make it easy to adjust the analysis for the case that parameters change. Unfortunately, these advancements come at a cost: parametric model checking is---or rather was---often slow. To make the analysis of parametric Markov models scale, we need three ingredients: clever algorithms, the right data structure, and good engineering. Clever algorithms are often the main (or sole) selling point; and we face the trouble that this paper focuses on -- the latter ingredients to efficient model checking. Consequently, our easiest claim to fame is in the speed-up we have often realised when comparing to the state of the art.
254 - Ming Xu 2021
Fidelity is one of the most widely used quantities in quantum information that measure the distance of quantum states through a noisy channel. In this paper, we introduce a quantum analogy of computation tree logic (CTL) called QCTL, which concerns f idelity instead of probability in probabilistic CTL, over quantum Markov chains (QMCs). Noisy channels are modelled by super-operators, which are specified by QCTL formulas; the initial quantum states are modelled by density operators, which are left parametric in the given QMC. The problem is to compute the minimumfidelity over all initial states for conservation. We achieve it by a reduction to quantifier elimination in the existential theory of the reals. The method is absolutely exact, so that QCTL formulas are proven to be decidable in exponential time. Finally, we implement the proposed method and demonstrate its effectiveness via a quantum IPv4 protocol.
70 - Ming Xu , Jingyi Mei , Ji Guan 2021
Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we initialised the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time system, we specify the temporal properties on QCTMC by si gnal temporal logic (STL). To effectively check the atomic propositions in STL, we develop a state-of-art real root isolation algorithm under Schanuels conjecture; further, we check the general STL formula by interval operations with a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula by calling the real root isolation algorithm. A running example of an open quantum walk is provided to demonstrate our method.
Probabilistic timed automata are an extension of timed automata with discrete probability distributions. We consider model-checking algorithms for the subclasses of probabilistic timed automata which have one or two clocks. Firstly, we show that PCTL probabilistic model-checking problems (such as determining whether a set of target states can be reached with probability at least 0.99 regardless of how nondeterminism is resolved) are PTIME-complete for one-clock probabilistic timed automata, and are EXPTIME-complete for probabilistic timed automata with two clocks. Secondly, we show that, for one-clock probabilistic timed automata, the model-checking problem for the probabilistic timed temporal logic PCTL is EXPTIME-complete. However, the model-checking problem for the subclass of PCTL which does not permit both punctual timing bounds, which require the occurrence of an event at an exact time point, and comparisons with probability bounds other than 0 or 1, is PTIME-complete for one-clock probabilistic timed automata.
Many complex systems can be described by population models, in which a pool of agents interacts and produces complex collective behaviours. We consider the problem of verifying formal properties of the underlying mathematical representation of these models, which is a Continuous Time Markov Chain, often with a huge state space. To circumvent the state space explosion, we rely on stochastic approximation techniques, which replace the large model by a simpler one, guaranteed to be probabilistically consistent. We show how to efficiently and accurately verify properties of random individual agents, specified by Continuous Stochastic Logic extended with Timed Automata (CSL-TA), and how to lift these specifications to the collective level, approximating the number of agents satisfying them using second or higher order stochastic approximation techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا