ﻻ يوجد ملخص باللغة العربية
Many complex systems can be described by population models, in which a pool of agents interacts and produces complex collective behaviours. We consider the problem of verifying formal properties of the underlying mathematical representation of these models, which is a Continuous Time Markov Chain, often with a huge state space. To circumvent the state space explosion, we rely on stochastic approximation techniques, which replace the large model by a simpler one, guaranteed to be probabilistically consistent. We show how to efficiently and accurately verify properties of random individual agents, specified by Continuous Stochastic Logic extended with Timed Automata (CSL-TA), and how to lift these specifications to the collective level, approximating the number of agents satisfying them using second or higher order stochastic approximation techniques.
Parametric Markov chains occur quite naturally in various applications: they can be used for a conservative analysis of probabilistic systems (no matter how the parameter is chosen, the system works to specification); they can be used to find optimal
We revisit the symbolic verification of Markov chains with respect to finite horizon reachability properties. The prevalent approach iteratively computes step-bounded state reachability probabilities. By contrast, recent advances in probabilistic inf
Fidelity is one of the most widely used quantities in quantum information that measure the distance of quantum states through a noisy channel. In this paper, we introduce a quantum analogy of computation tree logic (CTL) called QCTL, which concerns f
This paper describes in detail the example introduced in the preliminary evaluation of THRIVE. Specifically, it evaluates THRIVE over an abstraction of the ground model proposed for a critical component belonging to a medical device used by optometrists and ophtalmologits to dected visual problems.
Topological Spatial Model Checking is a recent paradigm that combines Model Checking with the topological interpretation of Modal Logic. The Spatial Logic of Closure Spaces, SLCS, extends Modal Logic with reachability connectives that, in turn, can b