ﻻ يوجد ملخص باللغة العربية
Let $G$ be a transitive permutation group on a finite set $Omega$ and recall that a base for $G$ is a subset of $Omega$ with trivial pointwise stabiliser. The base size of $G$, denoted $b(G)$, is the minimal size of a base. If $b(G)=2$ then we can study the Saxl graph $Sigma(G)$ of $G$, which has vertex set $Omega$ and two vertices are adjacent if they form a base. This is a vertex-transitive graph, which is conjectured to be connected with diameter at most $2$ when $G$ is primitive. In this paper, we combine probabilistic and computational methods to prove a strong form of this conjecture for all almost simple primitive groups with soluble point stabilisers. In this setting, we also establish best possible lower bounds on the clique and independence numbers of $Sigma(G)$ and we determine the groups with a unique regular suborbit, which can be interpreted in terms of the valency of $Sigma(G)$.
Let $G$ be a permutation group on a set $Omega$ and recall that a base for $G$ is a subset of $Omega$ such that its pointwise stabiliser is trivial. In a recent paper, Burness and Giudici introduced the Saxl graph of $G$, denoted $Sigma(G)$, with ver
A graph is edge-primitive if its automorphism group acts primitively on the edge set, and 2-arc-transitive if its automorphism group acts transitively on the set of 2-arcs. In this paper, we present a classification for those edge-primitive graphs wh
Let $sigma ={sigma_{i} | iin I}$ be a partition of the set of all primes $Bbb{P}$ and $G$ a finite group. Let $sigma (G)={sigma _{i} : sigma _{i}cap pi (G) e emptyset$. A set ${cal H}$ of subgroups of $G$ is said to be a complete Hall $sigma $-set of
Let $G$ be a reductive algebraic group over an algebraically closed field and let $V$ be a quasi-projective $G$-variety. We prove that the set of points $vin V$ such that ${rm dim}(G_v)$ is minimal and $G_v$ is reductive is open. We also prove some r
Let $mathfrak{F}$ be a class of finite groups and $G$ a finite group. Let ${cal L}_{mathfrak{F}}(G)$ be the set of all subgroups $A$ of $G$ with $A^{G}/A_{G}in mathfrak{F}$. A chief factor $H/K$ of $G$ is $mathfrak{F}$-central in $G$ if $(H/K)rtimes