ﻻ يوجد ملخص باللغة العربية
Let $sigma ={sigma_{i} | iin I}$ be a partition of the set of all primes $Bbb{P}$ and $G$ a finite group. Let $sigma (G)={sigma _{i} : sigma _{i}cap pi (G) e emptyset$. A set ${cal H}$ of subgroups of $G$ is said to be a complete Hall $sigma $-set of $G$ if every member $ e 1$ of ${cal H}$ is a Hall $sigma _{i}$-subgroup of $G$ for some $iin I$ and $cal H$ contains exactly one Hall $sigma _{i}$-subgroup of $G$ for every $i$ such that $sigma _{i}in sigma (G)$. We say that $G$ is $sigma$-full if $G$ possesses a complete Hall $sigma $-set. A complete Hall $sigma $-set $cal H$ of $G$ is said to be a $sigma$-basis of $G$ if every two subgroups $A, B incal H$ are permutable, that is, $AB=BA$. In this paper, we study properties of finite groups having a $sigma$-basis. In particular, we prove that if $G$ has a a $sigma$-basis, then $G$ is generalized $sigma$-soluble, that is, $G$ has a complete Hall $sigma $-set and for every chief factor $H/K$ of $G$ we have $|sigma (H/K)|leq 2$. Moreover, answering to Problem 8.28 in [A.N. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat., 4(3) (2016), 281--309], we prove the following Theorem A. Suppose that $G$ is $sigma$-full. Then every complete Hall $sigma$-set of $G$ forms a $sigma$-basis of $G$ if and only if $G$ is generalized $sigma$-soluble and for the automorphism group $G/C_{G}(H/K)$, induced by $G$ on any its chief factor $H/K$, we have either $sigma (H/K)=sigma (G/C_{G}(H/K))$ or $sigma (H/K) ={sigma _{i}}$ and $G/C_{G}(H/K)$ is a $sigma _{i} cup sigma _{j}$-group for some $i e j$.
Let $mathfrak{F}$ be a class of finite groups and $G$ a finite group. Let ${cal L}_{mathfrak{F}}(G)$ be the set of all subgroups $A$ of $G$ with $A^{G}/A_{G}in mathfrak{F}$. A chief factor $H/K$ of $G$ is $mathfrak{F}$-central in $G$ if $(H/K)rtimes
Let ${frak F}$ be a class of group and $G$ a finite group. Then a set $Sigma $ of subgroups of $G$ is called a emph{$G$-covering subgroup system} for the class ${frak F}$ if $Gin {frak F}$ whenever $Sigma subseteq {frak F}$. We prove that: {sl If a
Let $G$ be a transitive permutation group on a finite set $Omega$ and recall that a base for $G$ is a subset of $Omega$ with trivial pointwise stabiliser. The base size of $G$, denoted $b(G)$, is the minimal size of a base. If $b(G)=2$ then we can st
Let $G$ be a finite group and $sigma$ a partition of the set of all? primes $Bbb{P}$, that is, $sigma ={sigma_i mid iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_i$ and $sigma_icap sigma_j= emptyset $ for all $i e j$. If $n$ is an integer, we write $s
Let $G$ be a finite group and $sigma ={sigma_{i} | iin I}$ some partition of the set of all primes $Bbb{P}$, that is, $sigma ={sigma_{i} | iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_{i}$ and $sigma_{i}cap sigma_{j}= emptyset $ for all $i e j$. We s