ﻻ يوجد ملخص باللغة العربية
We characterize the equality between ultradifferentiable function classes defined in terms of abstractly given weight matrices and in terms of the corresponding matrix of associated weight functions by using new growth indices. These indices, defined by means of weight sequences and (associated) weight functions, are extending the notion of O-regular variation to a mixed setting. Hence we are extending the known comparison results concerning classes defined in terms of a single weight sequence and of a single weight function and give also these statements an interpretation expressed in O-regular variation.
A plethora of spaces in Functional Analysis (Braun-Meise-Taylor and Carleman ultradifferentiable and ultraholomorphic classes; Orlicz, Besov, Lipschitz, Lebesque spaces, to cite the main ones) are defined by means of a weighted structure, obtained fr
We consider r-ramification ultradifferentiable classes, introduced by J. Schmets and M. Valdivia in order to study the surjectivity of the Borel map, and later on also exploited by the authors in the ultraholomorphic context. We characterize quasiana
Given two systems $P=(P_j(D))_{j=1}^N$ and $Q=(Q_j(D))_{j=1}^M$ of linear partial differential operators with constant coefficients, we consider the spaces ${mathcal E}_omega^P$ and ${mathcal E}_omega^Q$ of $omega$-ultradifferentiable functions with
We develop real Paley-Wiener theorems for classes ${mathcal S}_omega$ of ultradifferentiable functions and related $L^{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor tra
We study weighted $(PLB)$-spaces of ultradifferentiable functions defined via a weight function (in the sense of Braun, Meise and Taylor) and a weight system. We characterize when such spaces are ultrabornological in terms of the defining weight syst