ﻻ يوجد ملخص باللغة العربية
We consider r-ramification ultradifferentiable classes, introduced by J. Schmets and M. Valdivia in order to study the surjectivity of the Borel map, and later on also exploited by the authors in the ultraholomorphic context. We characterize quasianalyticity in such classes, extend the results of Schmets and Valdivia about the image of the Borel map in a mixed ultradifferentiable setting, and obtain a version of the Whitney extension theorem in this framework.
We prove that the Hermite functions are an absolute Schauder basis for many global weighted spaces of ultradifferentiable functions in the matrix weighted setting and we determine also the corresponding coefficient spaces, thus extending previous wor
The Stieltjes moment problem is studied in the framework of general Gelfand-Shilov spaces defined via weight sequences. We characterize the injectivity and surjectivity of the Stieltjes moment mapping, sending a function to its sequence of moments, i
Given a non-quasianalytic subadditive weight function $omega$ we consider the weighted Schwartz space $mathcal{S}_omega$ and the short-time Fourier transform on $mathcal{S}_omega$, $mathcal{S}_omega$ and on the related modulation spaces with exponent
We study weighted $(PLB)$-spaces of ultradifferentiable functions defined via a weight function (in the sense of Braun, Meise and Taylor) and a weight system. We characterize when such spaces are ultrabornological in terms of the defining weight syst
We provide a projective description of the space $mathcal{E}^{{mathfrak{M}}}(Omega)$ of ultradifferentiable functions of Roumieu type, where $Omega$ is an arbitrary open set in $mathbb{R}^d$ and $mathfrak{M}$ is a weight matrix satisfying the analogu