ﻻ يوجد ملخص باللغة العربية
In the past three decades, a large number of metaheuristics have been proposed and shown high performance in solving complex optimization problems. While most variation operators in existing metaheuristics are empirically designed, this paper aims to design new operators automatically, which are expected to be search space independent and thus exhibit robust performance on different problems. For this purpose, this work first investigates the influence of translation invariance, scale invariance, and rotation invariance on the search behavior and performance of some representative operators. Then, we deduce the generic form of translation, scale, and rotation invariant operators. Afterwards, a principled approach is proposed for the automated design of operators, which searches for high-performance operators based on the deduced generic form. The experimental results demonstrate that the operators generated by the proposed approach outperform state-of-the-art ones on a variety of problems with complex landscapes and up to 1000 decision variables.
The success of metaheuristic optimization methods has led to the development of a large variety of algorithm paradigms. However, no algorithm clearly dominates all its competitors on all problems. Instead, the underlying variety of landscapes of opti
Following decades of sustained improvement, metaheuristics are one of the great success stories of optimization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need
Multi-objectivization is a term used to describe strategies developed for optimizing single-objective problems by multi-objective algorithms. This paper focuses on multi-objectivizing the sum-of-the-parts combinatorial optimization problems, which in
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u
We provide a complete pipeline for the detection of patterns of interest in an image. In our approach, the patterns are assumed to be adequately modeled by a known template, and are located at unknown positions and orientations that we aim at retriev