ﻻ يوجد ملخص باللغة العربية
Multi-objectivization is a term used to describe strategies developed for optimizing single-objective problems by multi-objective algorithms. This paper focuses on multi-objectivizing the sum-of-the-parts combinatorial optimization problems, which include the traveling salesman problem, the unconstrained binary quadratic programming and other well-known combinatorial optimization problem. For a sum-of-the-parts combinatorial optimization problem, we propose to decompose its original objective into two sub-objectives with controllable correlation. Based on the decomposition method, two new multi-objectivization inspired single-objective optimization techniques called non-dominance search and non-dominance exploitation are developed, respectively. Non-dominance search is combined with two metaheuristics, namely iterated local search and iterated tabu search, while non-dominance exploitation is embedded within the iterated Lin-Kernighan metaheuristic. The resultant metaheuristics are called ILS+NDS, ITS+NDS and ILK+NDE, respectively. Empirical studies on some TSP and UBQP instances show that with appropriate correlation between the sub-objectives, there are more chances to escape from local optima when new starting solution is selected from the non-dominated solutions defined by the decomposed sub-objectives. Experimental results also show that ILS+NDS, ITS+NDS and ILK+NDE all significantly outperform their counterparts on most of the test instances.
Following decades of sustained improvement, metaheuristics are one of the great success stories of optimization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need
The prospect of using quantum computers to solve combinatorial optimization problems via the quantum approximate optimization algorithm (QAOA) has attracted considerable interest in recent years. However, a key limitation associated with QAOA is the
Population-based methods are often used to solve multimodal optimization problems. By combining niching or clustering strategy, the state-of-the-art approaches generally divide the population into several subpopulations to find multiple solutions for
Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in
The main feature of the Dynamic Multi-objective Optimization Problems (DMOPs) is that optimization objective functions will change with times or environments. One of the promising approaches for solving the DMOPs is reusing the obtained Pareto optima