ﻻ يوجد ملخص باللغة العربية
Recent advances in fluorescence microscopy techniques and tissue clearing, labeling, and staining provide unprecedented opportunities to investigate brain structure and function. These experiments images make it possible to catalog brain cell types and define their location, morphology, and connectivity in a native context, leading to a better understanding of normal development and disease etiology. Consistent annotation of metadata is needed to provide the context necessary to understand, reuse, and integrate these data. This report describes an effort to establish metadata standards for 3D microscopy datasets for use by the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative and the neuroscience research community. These standards were built on existing efforts and developed with input from the brain microscopy community to promote adoption. The resulting Essential Metadata for 3D BRAIN Microscopy includes 91 fields organized into seven categories: Contributors, Funders, Publication, Instrument, Dataset, Specimen, and Image. Adoption of these metadata standards will ensure that investigators receive credit for their work, promote data reuse, facilitate downstream analysis of shared data, and encourage collaboration.
Neuroscientists are now able to acquire data at staggering rates across spatiotemporal scales. However, our ability to capitalize on existing datasets, tools, and intellectual capacities is hampered by technical challenges. The key barriers to accele
Deep learning shows high potential for many medical image analysis tasks. Neural networks can work with full-size data without extensive preprocessing and feature generation and, thus, information loss. Recent work has shown that the morphological di
In April 2020, the QUality Assessment and REProducibility for Instruments and Images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achie
We present several deep learning models for assessing the morphometric fidelity of deep grey matter region models extracted from brain MRI. We test three different convolutional neural net architectures (VGGNet, ResNet and Inception) over 2D maps of
Deficient myelination of the brain is associated with neurodevelopmental delays, particularly in high-risk infants, such as those born small in relation to their gestational age (SGA). New methods are needed to further study this condition. Here, we