ترغب بنشر مسار تعليمي؟ اضغط هنا

QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

78   0   0.0 ( 0 )
 نشر من قبل Ulrike Boehm
 تاريخ النشر 2021
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In April 2020, the QUality Assessment and REProducibility for Instruments and Images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models, and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREP-LiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.



قيم البحث

اقرأ أيضاً

The imminent release of atlases combining highly multiplexed tissue imaging with single cell sequencing and other omics data from human tissues and tumors creates an urgent need for data and metadata standards compliant with emerging and traditional approaches to histology. We describe the development of a Minimum Information about highly multiplexed Tissue Imaging (MITI) standard that draws on best practices from genomics and microscopy of cultured cells and model organisms.
Computational methods have reshaped the landscape of modern biology. While the biomedical community is increasingly dependent on computational tools, the mechanisms ensuring open data, open software, and reproducibility are variably enforced by acade mic institutions, funders, and publishers. Publications may present academic software for which essential materials are or become unavailable, such as source code and documentation. Publications that lack such information compromise the role of peer review in evaluating technical strength and scientific contribution. Incomplete ancillary information for an academic software package may bias or limit any subsequent work produced with the tool. We provide eight recommendations across four different domains to improve reproducibility, transparency, and rigor in computational biology - precisely on the main values which should be emphasized in life science curricula. Our recommendations for improving software availability, usability, and archival stability aim to foster a sustainable data science ecosystem in biomedicine and life science research.
Recent advances in fluorescence microscopy techniques and tissue clearing, labeling, and staining provide unprecedented opportunities to investigate brain structure and function. These experiments images make it possible to catalog brain cell types a nd define their location, morphology, and connectivity in a native context, leading to a better understanding of normal development and disease etiology. Consistent annotation of metadata is needed to provide the context necessary to understand, reuse, and integrate these data. This report describes an effort to establish metadata standards for 3D microscopy datasets for use by the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative and the neuroscience research community. These standards were built on existing efforts and developed with input from the brain microscopy community to promote adoption. The resulting Essential Metadata for 3D BRAIN Microscopy includes 91 fields organized into seven categories: Contributors, Funders, Publication, Instrument, Dataset, Specimen, and Image. Adoption of these metadata standards will ensure that investigators receive credit for their work, promote data reuse, facilitate downstream analysis of shared data, and encourage collaboration.
60 - Mary Nilsson 2020
In this paper, we provide guidance on how standard safety analyses and reporting of clinical trial safety data may need to be modified, given the potential impact of the COVID-19 pandemic. The impact could include missed visits, alternative methods f or assessments (such as virtual visits), alternative locations for assessments (such as local labs), and study drug interruptions. We focus on safety planning for Phase 2-4 clinical trials and integrated summaries for submissions. Starting from the recommended safety analyses proposed in white papers and a workshop, created as part of an FDA/PHUSE collaboration (PHUSE 2013, 2015, 2017, 2019), we assess what modifications might be needed. Impact from COVID-19 will likely affect treatment arms equally, so analyses of adverse events from controlled data can, to a large extent, remain unchanged. However, interpretation of summaries from uncontrolled data (summaries that include open-label extension data) will require even more caution than usual. Special consideration will be needed for safety topics of interest, especially events expected to have a higher incidence due to a COVID-19 infection or due to quarantine or travel restrictions (e.g., depression). Analyses of laboratory measurements may need to be modified to account for the combination of measurements from local and central laboratories.
The scientific detector systems for the ESO ELT first-light instruments, HARMONI, MICADO, and METIS, together will require 27 science detectors: seventeen 2.5 $mu$m cutoff H4RG-15 detectors, four 4K x 4K 231-84 CCDs, five 5.3 $mu$m cutoff H2RG detect ors, and one 13.5 $mu$m cutoff GEOSNAP detector. This challenging program of scientific detector system development covers everything from designing and producing state-of-the-art detector control and readout electronics, to developing new detector characterization techniques in the lab, to performance modeling and final system verification. We report briefly on the current design of these detector systems and developments underway to meet the challenging scientific performance goals of the ELT instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا