ﻻ يوجد ملخص باللغة العربية
We report the discovery of TOI-1444b, a 1.4-$R_oplus$ super-Earth on a 0.47-day orbit around a Sun-like star discovered by {it TESS}. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be $3.87 pm 0.71 M_oplus$. The RV dataset also indicates a possible non-transiting, 16-day planet ($11.8pm2.9M_oplus$). We report a tentative detection of phase curve variation and secondary eclipse of TOI-1444b in the {it TESS} bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets ($<2R_oplus$) and contrast them with the newly discovered sub-day ultra-hot Neptunes ($>3R_oplus$, $>2000F_oplus$ TOI-849 b, LTT9779 b and K2-100). We find that 1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32$pm$0.04; and have masses below the threshold of runaway accretion ($sim 10M_oplus$), while ultra-hot Neptunes are above the threshold and have H/He or other volatile envelope. 2) USPs are almost always found in multi-planet system consistent with a secular interaction formation scenario; ultra-hot Neptunes ($P_{rm orb} lesssim$1 day) tend to be ``lonely similar to longer-period hot Neptunes($P_{rm orb}$1-10 days) and hot Jupiters. 3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. 4) In all these respects, the ultra-hot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultra-hot Neptunes are rarer than both USP and hot Jupiters by 1-2 orders of magnitude.
We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 - a low metallicity K6V dwarf star. Photometry from TESS yields radii of $R_{rm b} = 2.33 pm 0
Based on HARPS-N radial velocities (RVs) and TESS photometry, we present a full characterisation of the planetary system orbiting the late G dwarf TOI-561. After the identification of three transiting candidates by TESS, we discovered two additional
Dynamical histories of planetary systems, as well as atmospheric evolution of highly irradiated planets, can be studied by characterizing the ultra-short-period planet population, which the TESS mission is particularly well suited to discover. Here,
We report the measurement of a spectroscopic transit of TOI-1726 c, one of two planets transiting a G-type star with $V$ = 6.9 in the Ursa Major Moving Group ($sim$400 Myr). With a precise age constraint from cluster membership, TOI-1726 provides a g
We present a comprehensive theoretical study on the spin evolution of a planet under the combined effects of tidal dissipation and gravitational perturbation from an external companion. Such a spin + companion system (called Colombos top) appears in