ترغب بنشر مسار تعليمي؟ اضغط هنا

TKS III: A Stellar Obliquity Measurement of TOI-1726 c

101   0   0.0 ( 0 )
 نشر من قبل Fei Dai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the measurement of a spectroscopic transit of TOI-1726 c, one of two planets transiting a G-type star with $V$ = 6.9 in the Ursa Major Moving Group ($sim$400 Myr). With a precise age constraint from cluster membership, TOI-1726 provides a great opportunity to test various obliquity excitation scenarios that operate on different timescales. By modeling the Rossiter-McLaughlin (RM) effect, we derived a sky-projected obliquity of $-1^{+35}_{-32}~^{circ}$. This result rules out a polar/retrograde orbit; and is consistent with an aligned orbit for planet c. Considering the previously reported, similarly prograde RM measurement of planet b and the transiting nature of both planets, TOI-1726 tentatively conforms to the overall picture that compact multi-transiting planetary systems tend to have coplanar, likely aligned orbits. TOI-1726 is also a great atmospheric target for understanding differential atmospheric loss of sub-Neptune planets (planet b 2.2 $R_oplus$ and c 2.7 $R_oplus$ both likely underwent photoevaporation). The coplanar geometry points to a dynamically cold history of the system that simplifies any future modeling of atmospheric escape.



قيم البحث

اقرأ أيضاً

We measure a tilt of 86+-6 deg between the sky projections of the rotation axis of the WASP-7 star, and the orbital axis of its close-in giant planet. This measurement is based on observations of the Rossiter-McLaughlin (RM) effect with the Planet Fi nder Spectrograph on the Magellan II telescope. The result conforms with the previously noted pattern among hot-Jupiter hosts, namely, that the hosts lacking thick convective envelopes have high obliquities. Because the planets trajectory crosses a wide range of stellar latitudes, observations of the RM effect can in principle reveal the stellar differential rotation profile; however, with the present data the signal of differential rotation could not be detected. The host star is found to exhibit radial-velocity noise (``stellar jitter) with an amplitude of ~30m/s over a timescale of days.
We report the discovery of TOI-1444b, a 1.4-$R_oplus$ super-Earth on a 0.47-day orbit around a Sun-like star discovered by {it TESS}. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be $3.87 pm 0.71 M_oplus$ . The RV dataset also indicates a possible non-transiting, 16-day planet ($11.8pm2.9M_oplus$). We report a tentative detection of phase curve variation and secondary eclipse of TOI-1444b in the {it TESS} bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets ($<2R_oplus$) and contrast them with the newly discovered sub-day ultra-hot Neptunes ($>3R_oplus$, $>2000F_oplus$ TOI-849 b, LTT9779 b and K2-100). We find that 1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32$pm$0.04; and have masses below the threshold of runaway accretion ($sim 10M_oplus$), while ultra-hot Neptunes are above the threshold and have H/He or other volatile envelope. 2) USPs are almost always found in multi-planet system consistent with a secular interaction formation scenario; ultra-hot Neptunes ($P_{rm orb} lesssim$1 day) tend to be ``lonely similar to longer-period hot Neptunes($P_{rm orb}$1-10 days) and hot Jupiters. 3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. 4) In all these respects, the ultra-hot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultra-hot Neptunes are rarer than both USP and hot Jupiters by 1-2 orders of magnitude.
The abundance of short-period planetary systems with high orbital obliquities relative to the spin of their host stars is often taken as evidence that scattering processes play important roles in the formation and evolution of these systems. More rec ent studies have suggested that wide binary companions can tilt protoplanetary disks, inducing a high stellar obliquity that form through smooth processes like disk migration. DS Tuc Ab, a transiting planet with an 8.138 day period in the 40 Myr Tucana-Horologium association, likely orbits in the same plane as its now-dissipated protoplanetary disk, enabling us to test these theories of disk physics. Here, we report on Rossiter-McLaughlin observations of one transit of DS Tuc Ab with the Planet Finder Spectrograph on the Magellan Clay Telescope at Las Campanas Observatory. We confirm the previously detected planet by modeling the planet transit and stellar activity signals simultaneously. We test multiple models to describe the stellar activity-induced radial velocity variations over the night of the transit, finding the obliquity to be low: $lambda = 12 pm 13$ degrees, suggesting that this planet likely formed through smooth disk processes and its protoplanetary disk was not significantly torqued by DS Tuc B. The specific stellar activity model chosen affects the results at the $approx 5$ degree level. This is the youngest planet to be observed using this technique; we provide a discussion on best practices to accurately measure the observed signal of similar young planets.
We report the discovery and confirmation of two new hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS): TOI 564 b and TOI 905 b. The transits of these two planets were initially observed by TESS with orbital periods of 1.651 d and 3.739 d, respectively. We conducted follow-up observations of each system from the ground, including photometry in multiple filters, speckle interferometry, and radial velocity measurements. For TOI 564 b, our global fitting revealed a classical hot Jupiter with a mass of $1.463^{+0.10}_{-0.096} M_J$ and a radius of $1.02^{+0.71}_{-0.29} R_J$. TOI 905 b is a classical hot Jupiter as well, with a mass of $0.667^{+0.042}_{-0.041} M_J$ and radius of $1.171^{+0.053}_{-0.051} R_J$. Both planets orbit Sun-like, moderately bright, mid-G dwarf stars with V ~ 11. While TOI 905 b fully transits its star, we found that TOI 564 b has a very high transit impact parameter of $0.994^{+0.083}_{-0.049}$, making it one of only ~20 known systems to exhibit a grazing transit and one of the brightest host stars among them. TOI 564 b is therefore one of the most attractive systems to search for additional non-transiting, smaller planets by exploiting the sensitivity of grazing transits to small changes in inclination and transit duration over the time scale of several years.
HIP 67522 b is a 17 Myr old, close-in ($P_{orb} = 6.96$ d), Jupiter-sized ($R = 10,R_{oplus}$) transiting planet orbiting a Sun like star in the Sco-Cen OB association. We present our measurement of the systems projected orbital obliquity via two spe ctroscopic transit observations using the CHIRON spectroscopic facility. We present a global model that accounts for large surface brightness features typical of such young stars during spectroscopic transit observations. With a value of $|lambda| = 5.1^{+2.5,circ}_{-3.7}$ degree, we demonstrate that this well-aligned system cannot be the result of a high eccentricity driven migration history. By being the youngest planet with a known obliquity, HIP 67522 b holds a special place in contributing to our understanding of giant planet formation and evolution. Our analysis shows the feasibility of such measurements for young and very active stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا