ترغب بنشر مسار تعليمي؟ اضغط هنا

Spreading speeds and one-dimensional symmetry for reaction-diffusion equations

127   0   0.0 ( 0 )
 نشر من قبل Francois Hamel
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Franc{c}ois Hamel




اسأل ChatGPT حول البحث

This paper is devoted to the study of the large time dynamics of bounded solutions of reaction-diffusion equations with unbounded initial support in R N. We first prove a general Freidlin-G{a}rtner type formula for the spreading speeds of the solutions in any direction. This formula holds under general assumptions on the reaction and for solutions emanating from initial conditions with general unbounded support, whereas most of earlier results were concerned with more specific reactions and compactly supported or almost-planar initial conditions. We also prove some results of independent interest on some conditions guaranteeing the spreading of solutions with large initial support and the link between these conditions and the existence of traveling fronts with positive speed. Furthermore, we show some flattening properties of the level sets of the solutions if initially supported on subgraphs. We also investigate the special case of asymptotically conical-shaped initial conditions. For Fisher-KPP equations, we prove some asymptotic one-dimensional symmetry properties for the elements of the $Omega$-limit set of the solutions, in the spirit of a conjecture of De Giorgi for stationary solutions of Allen-Cahn equations. Lastly, we show some logarithmicin-time estimates of the lag of the position of the solutions with respect to that of a planar front with minimal speed, for initial conditions which are supported on subgraphs with logarithmic growth at infinity. The proofs use a mix of ODE and PDE methods, as well as some geometric arguments. The paper also contains some related conjectures and open problems.



قيم البحث

اقرأ أيضاً

105 - Arnaud Ducrot 2019
We investigate spreading properties of solutions of a large class of two-component reaction-diffusion systems, including prey-predator systems as a special case. By spreading properties we mean the long time behaviour of solution fronts that start fr om localized (i.e. compactly supported) initial data. Though there are results in the literature on the existence of travelling waves for such systems, very little has been known-at least theoretically-about the spreading phenomena exhibited by solutions with compactly supported initial data. The main difficulty comes from the fact that the comparison principle does not hold for such systems. Furthermore, the techniques that are known for travelling waves such as fixed point theorems and phase portrait analysis do not apply to spreading fronts. In this paper, we first prove that spreading occurs with definite spreading speeds. Intriguingly, two separate fronts of different speeds may appear in one solution-one for the prey and the other for the predator-in some situations.
Spatially periodic reaction-diffusion equations typically admit pulsating waves which describe the transition from one steady state to another. Due to the heterogeneity, in general such an equation is not invariant by rotation and therefore the speed of the pulsating wave may a priori depend on its direction. However, little is actually known in the literature about whether it truly does: surprisingly, it is even known in the one-dimensional monostable Fisher-KPP case that the speed is the same in the opposite directions despite the lack of symmetry. Here we investigate this issue in the bistable case and show that the set of admissible speeds is actually rather large, which means that the shape of propagation may indeed be asymmetrical. More precisely, we show in any spatial dimension that one can choose an arbitrary large number of directions , and find a spatially periodic bistable type equation to achieve any combination of speeds in those directions, provided those speeds have the same sign. In particular, in spatial dimension 1 and unlike the Fisher-KPP case, any pair of (either nonnegative or nonpositive) rightward and leftward wave speeds is admissible. We also show that these variations in the speeds of bistable pulsating waves lead to strongly asymmetrical situations in the multistable equations.
Invasion phenomena for heterogeneous reaction-diffusion equations are contemporary and challenging questions in applied mathematics. In this paper we are interested in the question of spreading for a reaction-diffusion equation when the subdomain whe re the reaction term is positive is shifting/contracting at a given speed $c$. This problem arises in particular in the modelling of the impact of climate change on population dynamics. By placing ourselves in the appropriate moving frame, this leads us to consider a reaction-diffusion-advection equation with a heterogeneous in space reaction term, in dimension $Ngeq1$. We investigate the behaviour of the solution $u$ depending on the value of the advection constant~$c$, which typically stands for the velocity of climate change. We find that, when the initial datum is compactly supported, there exists precisely three ranges for $c$ leading to drastically different situations. In the lower speed range the solution always spreads, while in the upper range it always vanishes. More surprisingly, we find that that both spreading and vanishing may occur in an intermediate speed range. The threshold between those two outcomes is always sharp, both with respect to $c$ and to the initial condition. We also briefly consider the case of an exponentially decreasing initial condition, where we relate the decreasing rate of the initial condition with the range of values of~$c$ such that spreading occurs.
Many systems in life sciences have been modeled by reaction-diffusion equations. However, under some circumstances, these biological systems may experience instantaneous and periodic perturbations (e.g. harvest, birth, release, fire events, etc) such that an appropriate formalism is necessary, using, for instance, impulsive reaction-diffusion equations. While several works tackled the issue of traveling waves for monotone reaction-diffusion equations and the computation of spreading speeds, very little has been done in the case of monotone impulsive reaction-diffusion equations. Based on vector-valued recursion equations theory, we aim to present in this paper results that address two main issues of monotone impulsive reaction-diffusion equations. First, they deal with the existence of traveling waves for monotone systems of impulsive reaction-diffusion equations. Second, they allow the computation of spreading speeds for monotone systems of impulsive reaction-diffusion equations. We apply our methodology to a planar system of impulsive reaction-diffusion equations that models tree-grass interactions in fire-prone savannas. Numerical simulations, including numerical approximations of spreading speeds, are finally provided in order to illustrate our theoretical results and support the discussion.
We consider absorbing chemical reactions in a fluid current modeled by the coupled advection-reaction-diffusion equations. In these systems, the interplay between chemical diffusion and fluid transportation causes the enhanced dissipation phenomenon. We show that the enhanced dissipation time scale, together with the reaction coupling strength, determines the characteristic time scale of the reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا