ﻻ يوجد ملخص باللغة العربية
Invasion phenomena for heterogeneous reaction-diffusion equations are contemporary and challenging questions in applied mathematics. In this paper we are interested in the question of spreading for a reaction-diffusion equation when the subdomain where the reaction term is positive is shifting/contracting at a given speed $c$. This problem arises in particular in the modelling of the impact of climate change on population dynamics. By placing ourselves in the appropriate moving frame, this leads us to consider a reaction-diffusion-advection equation with a heterogeneous in space reaction term, in dimension $Ngeq1$. We investigate the behaviour of the solution $u$ depending on the value of the advection constant~$c$, which typically stands for the velocity of climate change. We find that, when the initial datum is compactly supported, there exists precisely three ranges for $c$ leading to drastically different situations. In the lower speed range the solution always spreads, while in the upper range it always vanishes. More surprisingly, we find that that both spreading and vanishing may occur in an intermediate speed range. The threshold between those two outcomes is always sharp, both with respect to $c$ and to the initial condition. We also briefly consider the case of an exponentially decreasing initial condition, where we relate the decreasing rate of the initial condition with the range of values of~$c$ such that spreading occurs.
We consider a class of cooperative reaction-diffusion systems with free boundaries in one space dimension, where the diffusion terms are nonlocal, given by integral operators involving suitable kernel functions, and they are allowed not to appear in
This paper aims to explore the temporal-spatial spreading and asymptotic behaviors of West Nile virus by a reaction-advection-diffusion system with free boundaries, especially considering the impact of advection term on the extinction and persistence
We establish an integral variational principle for the spreading speed of the one dimensional reaction diffusion equation with Stefan boundary conditions, for arbitrary reaction terms. This principle allows to obtain in a simple way the dependence of
This paper is devoted to the study of the large time dynamics of bounded solutions of reaction-diffusion equations with unbounded initial support in R N. We first prove a general Freidlin-G{a}rtner type formula for the spreading speeds of the solutio
We consider the nonlocal analogue of the Fisher-KPP equation. We do not assume that the Borel-measure is absolutely continuous with respect to the Lebesgue measure. We gives a sufficient condition for existence of traveling waves, and a necessary condition for existence of periodic traveling waves.