ﻻ يوجد ملخص باللغة العربية
Kitaevs quantum double model is a family of exactly solvable lattice models that realize two dimensional topological phases of matter. Originally it is based on finite groups, and is later generalized to semi-simple Hopf algebras. We rigorously define and study ribbon operators in the generalized Kitaev quantum double model. These ribbon operators are important tools to understand quasi-particle excitations. It turns out that there are some subtleties in defining the operators in contrast to what one would naively think. In particular, one has to distinguish two classes of ribbons which we call locally clockwise and locally counterclockwise ribbons. Moreover, this issue already exists in the original model based on finite non-Abelian groups. We show how certain properties would fail even in the original model if we do not distinguish these two classes of ribbons. Perhaps not surprisingly, under the new definitions ribbon operators satisfy all properties that are expected. For instance, they create quasi-particle excitations only at the end of the ribbon, and the types of the quasi-particles correspond to irreducible representations of the Drinfeld double of the input Hopf algebra. However, the proofs of these properties are much more complicated than those in the case of finite groups. This is partly due to the complications in dealing with general Hopf algebras rather than just group algebras.
We study actions of pointed Hopf algebras in the $ZZ$-graded setting. Our main result classifies inner-faithful actions of generalized Taft algebras on quantum generalized Weyl algebras which respect the $ZZ$-grading. We also show that generically th
In this paper, first we introduce the notion of a twilled 3-Lie algebra, and construct an $L_infty$-algebra, whose Maurer-Cartan elements give rise to new twilled 3-Lie algebras by twisting. In particular, we recover the Lie $3$-algebra whose Maurer-
The codomain category of a generalized homology theory is the category of modules over a ring. For an abelian category A, an A-valued (generalized) homology theory is defined by formally replacing the category of modules with the category A. It is kn
We generalize the notion of a Rota-Baxter operator on groups and the notion of a Rota-Baxter operator of weight 1 on Lie algebras and define and study the notion of a Rota-Baxter operator on a cocommutative Hopf algebra $H$. If $H=F[G]$ is the group
In this paper, we introduce the definition of generalized BiHom-Lie algebras and generalized BiHom-Lie admissible algebras in the category ${}_H{mathcal M}$ of left modules for any quasitriangular Hopf algebra $(H, R) $. Also, we describe the BiHom