ﻻ يوجد ملخص باللغة العربية
In this paper, first we introduce the notion of a twilled 3-Lie algebra, and construct an $L_infty$-algebra, whose Maurer-Cartan elements give rise to new twilled 3-Lie algebras by twisting. In particular, we recover the Lie $3$-algebra whose Maurer-Cartan elements are O-operators (also called relative Rota-Baxter operators) on 3-Lie algebras. Then we introduce the notion of generalized matched pairs of 3-Lie algebras using generalized representations of 3-Lie algebras, which will give rise to twilled 3-Lie algebras. The usual matched pairs of 3-Lie algebras correspond to a special class of twilled 3-Lie algebras, which we call strict twilled 3-Lie algebras. Finally, we use O-operators to construct explicit twilled 3-Lie algebras, and explain why an $r$-matrix for a 3-Lie algebra can not give rise to a double construction 3-Lie bialgebra. Examples of twilled 3-Lie algebras are given to illustrate the various interesting phenomenon.
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this
In this paper, we define a class of 3-algebras which are called 3-Lie-Rinehart algebras. A 3-Lie-Rinehart algebra is a triple $(L, A, rho)$, where $A$ is a commutative associative algebra, $L$ is an $A$-module, $(A, rho)$ is a 3-Lie algebra $L$-modul
We introduce the conception of matched pairs of $(H, beta)$-Lie algebras, construct an $(H, beta)$-Lie algebra through them. We prove that the cocycle twist of a matched pair of $(H, beta)$-Lie algebras can also be matched.
In this paper, we study the structure of 3-Lie algebras with involutive derivations. We prove that if $A$ is an $m$-dimensional 3-Lie algebra with an involutive derivation $D$, then there exists a compatible 3-pre-Lie algebra $(A, { , , , }_D)$ such
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L