ﻻ يوجد ملخص باللغة العربية
The relative entropy of entanglement $E_R$ is defined as the distance of a multi-partite quantum state from the set of separable states as measured by the quantum relative entropy. We show that this optimisation is always achieved, i.e. any state admits a (unique) closest separable state, even in infinite dimension; also, $E_R$ is everywhere lower semi-continuous. These results, which seem to have gone unnoticed so far, hold not only for the relative entropy of entanglement and its multi-partite generalisations, but also for many other similar resource quantifiers, such as the relative entropy of non-Gaussianity, of non-classicality, of Wigner negativity -- more generally, all relative entropy distances from the sets of states with non-negative $lambda$-quasi-probability distribution. The crucial hypothesis underpinning all these applications is the weak*-closedness of the cone generated by free states. We complement our findings by giving explicit and asymptotically tight continuity estimates for $E_R$ and closely related quantities in the presence of an energy constraint.
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing con
We extend Vedral and Plenios theorem (theorem 3 in Phys. Rev. A 57, 1619) to a more general case, and obtain the relative entropy of entanglement for a class of mixed states, this result can also follow from Rains theorem 9 in Phys. Rev. A 60, 179.
Building upon work by Matsumoto, we show that the quantum relative entropy with full-rank second argument is determined by four simple axioms: i) Continuity in the first argument, ii) the validity of the data-processing inequality, iii) additivity un
As two of the most important entanglement measures--the entanglement of formation and the entanglement of distillation--have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessar
We calculate the relative entropy of entanglement for rotationally invariant states of spin-1/2 and arbitrary spin-$j$ particles or of spin-1 particle and spin-$j$ particle with integer $j$. A lower bound of relative entropy of entanglement and an up