ترغب بنشر مسار تعليمي؟ اضغط هنا

Connections between relative entropy of entanglement and geometric measure of entanglement

152   0   0.0 ( 0 )
 نشر من قبل Tzu-Chieh Wei
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tzu-Chieh Wei




اسأل ChatGPT حول البحث

As two of the most important entanglement measures--the entanglement of formation and the entanglement of distillation--have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessary. Here, connections between two other entanglement measures--the relative entropy of entanglement and the geometric measure of entanglement--are investigated. It is found that for arbitrary pure states the latter gives rise to a lower bound on the former. For certain pure states, some bipartite and some multipartite, this lower bound is saturated, and thus their relative entropy of entanglement can be found analytically in terms of their known geometric measure of entanglement. For certain mixed states, upper bounds on the relative entropy of entanglement are also established. Numerical evidence strongly suggests that these upper bounds are tight, i.e., they are actually the relative entropy of entanglement.



قيم البحث

اقرأ أيضاً

249 - Shengjun Wu , Yongde Zhang 2000
We extend Vedral and Plenios theorem (theorem 3 in Phys. Rev. A 57, 1619) to a more general case, and obtain the relative entropy of entanglement for a class of mixed states, this result can also follow from Rains theorem 9 in Phys. Rev. A 60, 179.
565 - Zhen Wang , Zhixi Wang 2008
We calculate the relative entropy of entanglement for rotationally invariant states of spin-1/2 and arbitrary spin-$j$ particles or of spin-1 particle and spin-$j$ particle with integer $j$. A lower bound of relative entropy of entanglement and an up per bound of distillable entanglement are presented for rotationally invariant states of spin-1 particle and spin-$j$ particle with half-integer $j$.
The entanglement entropy (EE) can measure the entanglement between a spatial subregion and its complement, which provides key information about quantum states. Here, rather than focusing on specific regions, we study how the entanglement entropy chan ges with small deformations of the entangling surface. This leads to the notion of entanglement susceptibilities. These relate the variation of the EE to the geometric variation of the subregion. We determine the form of the leading entanglement susceptibilities for a large class of scale invariant states, such as groundstates of conformal field theories, and systems with Lifshitz scaling, which includes fixed points governed by disorder. We then use the susceptibilities to derive the universal contributions that arise due to non-smooth features in the entangling surface: corners in 2d, as well as cones and trihedral vertices in 3d. We finally discuss the generalization to Renyi entropies.
The geometric measure of entanglement is the distance or angle between an entangled target state and the nearest unentangled state. Often one considers the geometric measure of entanglement for highly symmetric entangled states because it simplifies the calculations and allows for analytic solutions. Although some symmetry is required in order to deal with large numbers of qubits, we are able to loosen significantly the restrictions on the highly symmetric states considered previously, and consider several generalizations of the coefficients of both target and unentangled states. This allows us to compute the geometric entanglement measure for larger and more relevant classes of states.
Quantifying entanglement for multipartite quantum state is a crucial task in many aspects of quantum information theory. Among all the entanglement measures, relative entropy of entanglement $E_{R}$ is an outstanding quantity due to its clear geometr ic meaning, easy compatibility with different system sizes, and various applications in many other related quantity calculations. Lower bounds of $E_R$ were previously found based on distance to the set of positive partial transpose states. We propose a method to calculate upper bounds of $E_R$ based on active learning, a subfield in machine learning, to generate an approximation of the set of separable states. We apply our method to calculate $E_R$ for composite systems of various sizes, and compare with the previous known lower bounds, obtaining promising results. Our method adds a reliable tool for entanglement measure calculation and deepens our understanding for the structure of separable states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا