ﻻ يوجد ملخص باللغة العربية
Spear Phishing is a harmful cyber-attack facing business and individuals worldwide. Considerable research has been conducted recently into the use of Machine Learning (ML) techniques to detect spear-phishing emails. ML-based solutions may suffer from zero-day attacks; unseen attacks unaccounted for in the training data. As new attacks emerge, classifiers trained on older data are unable to detect these new varieties of attacks resulting in increasingly inaccurate predictions. Spear Phishing detection also faces scalability challenges due to the growth of the required features which is proportional to the number of the senders within a receiver mailbox. This differs from traditional phishing attacks which typically perform only a binary classification between phishing and benign emails. Therefore, we devise a possible solution to these problems, named RAIDER: Reinforcement AIded Spear Phishing DEtectoR. A reinforcement-learning based feature evaluation system that can automatically find the optimum features for detecting different types of attacks. By leveraging a reward and penalty system, RAIDER allows for autonomous features selection. RAIDER also keeps the number of features to a minimum by selecting only the significant features to represent phishing emails and detect spear-phishing attacks. After extensive evaluation of RAIDER over 11,000 emails and across 3 attack scenarios, our results suggest that using reinforcement learning to automatically identify the significant features could reduce the dimensions of the required features by 55% in comparison to existing ML-based systems. It also improves the accuracy of detecting spoofing attacks by 4% from 90% to 94%. In addition, RAIDER demonstrates reasonable detection accuracy even against a sophisticated attack named Known Sender in which spear-phishing emails greatly resemble those of the impersonated sender.
Phishing is one of the most severe cyber-attacks where researchers are interested to find a solution. In phishing, attackers lure end-users and steal their personal in-formation. To minimize the damage caused by phishing must be detected as early as
Phishing attacks are among emerging security issues that recently draws significant attention in the cyber security community. There are numerous existing approaches for phishing URL detection. However, malicious URL detection is still a research hot
The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for im
Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To add
Blockchain technology and, in particular, blockchain-based transaction offers us information that has never been seen before in the financial world. In contrast to fiat currencies, transactions through virtual currencies like Bitcoin are completely p