ﻻ يوجد ملخص باللغة العربية
Blockchain technology and, in particular, blockchain-based transaction offers us information that has never been seen before in the financial world. In contrast to fiat currencies, transactions through virtual currencies like Bitcoin are completely public. And these transactions of cryptocurrencies are permanently recorded on Blockchain and are available at any time. Therefore, this allows us to build transaction networks (TN) to analyze illegal phenomenons such as phishing scams in blockchain from a network perspective. In this paper, we propose a Transaction SubGraph Network (TSGN) based classification model to identify phishing accounts in Ethereum. Firstly we extract transaction subgraphs for each address and then expand these subgraphs into corresponding TSGNs based on the different mapping mechanisms. We find that TSGNs can provide more potential information to benefit the identification of phishing accounts. Moreover, Directed-TSGNs, by introducing direction attributes, can retain the transaction flow information that captures the significant topological pattern of phishing scams. By comparing with the TSGN, Directed-TSGN indeed has much lower time complexity, benefiting the graph representation learning. Experimental results demonstrate that, combined with network representation algorithms, the TSGN model can capture more features to enhance the classification algorithm and improve phishing nodes identification accuracy in the Ethereum networks.
Smart contracts are programs running on blockchain to execute transactions. When input constraints or security properties are violated at runtime, the transaction being executed by a smart contract needs to be reverted to avoid undesirable consequenc
The rise in the adoption of blockchain technology has led to increased illegal activities by cyber-criminals costing billions of dollars. Many machine learning algorithms are applied to detect such illegal behavior. These algorithms are often trained
The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for im
Phishing is one of the most severe cyber-attacks where researchers are interested to find a solution. In phishing, attackers lure end-users and steal their personal in-formation. To minimize the damage caused by phishing must be detected as early as
Spear Phishing is a harmful cyber-attack facing business and individuals worldwide. Considerable research has been conducted recently into the use of Machine Learning (ML) techniques to detect spear-phishing emails. ML-based solutions may suffer from