ﻻ يوجد ملخص باللغة العربية
Famous double-slit or double-path experiments, implemented in a Youngs or Mach-Zehnder interferometer, have confirmed the dual nature of quantum matter, When a stream of photons, neutrons, atoms, or molecules, passes through two slits, either wave-like interference fringes build up on a screen, or particle-like which-path distribution can be ascertained. These quantum objects exhibit both wave and particle properties but exclusively, depending on the way they are measured. In an equivalent Mach-Zehnder configuration, the object displays either wave or particle nature in the presence or absence of a beamsplitter, respectively, that represents the choice of which-measurement. Wheeler further proposed a gedanken experiment, in which the choice of which-measurement is delayed, i.e. determined after the object has already entered the interferometer, so as to exclude the possibility of predicting which-measurement it will confront. The delayed-choice experiments have enabled significant demonstrations of genuine two-path duality of different quantum objects. Recently, a quantum controlled version of delayed-choice was proposed by Ionicioiu and Terno, by introducing a quantum-controlled beamsplitter that is in a coherent superposition of presence and absence. It represents a controllable experiment platform that can not only reveal wave and particle characters, but also their superposition. Moreover, a quantitative description of two-slit duality relation was initialized in Wootters and Zureks seminal work and formalized by Greenberger,et. al. as D2+V2<=1, where D is the distinguishability of whichpath information, and V is the contrast visibility of interference. In this regard, getting which-path information exclusively reduces the interference visibility, and vice versa. This double-path duality relation has been tested in pioneer experiments and recently in delayed-choice measurements.
Wave-particle duality epitomizes the counterintuitive character of quantum physics. A striking illustration is the quantum delay-choice experiment, which is based on Wheelers classic delayed-choice gedanken experiment, but with the addition of a quan
Wheelers delayed-choice experiment investigates the indeterminacy of wave-particle duality and the role played by the measurement apparatus in quantum theory. Due to the inconsistency with classical physics, it has been generally believed that it is
Complementarity, that is the ability of a quantum object to behave either as a particle or as a wave, is one of the most intriguing features of quantum mechanics. An exemplary Gedanken experiment, emphasizing such a measurement-dependent nature, was
We propose a scheme feasible with current technology to implement a quantum delayed-choice experiment in the realm of cavity QED. Our scheme uses two-level atoms interacting on and off resonantly with a single mode of a high Q cavity. At the end of t
Nowadays the most intriguing features of wave particle complementarity of single photon is exemplified by the famous Wheelers delayed choice experiment in linear optics, nuclear magnetic resonance and integrated photonic device systems. Studying the