ﻻ يوجد ملخص باللغة العربية
We propose a scheme feasible with current technology to implement a quantum delayed-choice experiment in the realm of cavity QED. Our scheme uses two-level atoms interacting on and off resonantly with a single mode of a high Q cavity. At the end of the protocol, the state of the cavity returns to its ground state, allowing new sequential operations. The particle and wave behavior, which are verified in a single experimental setup, are postselected after the atomic states are selectively detected.
Wave-particle duality epitomizes the counterintuitive character of quantum physics. A striking illustration is the quantum delay-choice experiment, which is based on Wheelers classic delayed-choice gedanken experiment, but with the addition of a quan
Wheelers delayed-choice experiment investigates the indeterminacy of wave-particle duality and the role played by the measurement apparatus in quantum theory. Due to the inconsistency with classical physics, it has been generally believed that it is
Famous double-slit or double-path experiments, implemented in a Youngs or Mach-Zehnder interferometer, have confirmed the dual nature of quantum matter, When a stream of photons, neutrons, atoms, or molecules, passes through two slits, either wave-li
Complementarity, that is the ability of a quantum object to behave either as a particle or as a wave, is one of the most intriguing features of quantum mechanics. An exemplary Gedanken experiment, emphasizing such a measurement-dependent nature, was
Many paradoxes of quantum mechanics come from the fact that a quantum system can possess different features at the same time, such as in wave-particle duality or quantum superposition. In recent delayed-choice experiments, a quantum mechanical system