ﻻ يوجد ملخص باللغة العربية
We develop variational regularization methods which leverage sparsity-promoting priors to solve severely ill posed inverse problems defined on the 3D ball (i.e. the solid sphere). Our method solves the problem natively on the ball and thus does not suffer from discontinuities that plague alternate approaches where each spherical shell is considered independently. Additionally, we leverage advances in probability density theory to produce Bayesian variational methods which benefit from the computational efficiency of advanced convex optimization algorithms, whilst supporting principled uncertainty quantification. We showcase these variational regularization and uncertainty quantification techniques on an illustrative example. The C++ code discussed throughout is provided under a GNU general public license.
We develop an exact wavelet transform on the three-dimensional ball (i.e. on the solid sphere), which we name the flaglet transform. For this purpose we first construct an exact transform on the radial half-line using damped Laguerre polynomials and
We review scale-discretized wavelets on the sphere, which are directional and allow one to probe oriented structure in data defined on the sphere. Furthermore, scale-discretized wavelets allow in practice the exact synthesis of a signal from its wave
We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework defined natively on the sphere that is
We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number o