ﻻ يوجد ملخص باللغة العربية
We develop an exact wavelet transform on the three-dimensional ball (i.e. on the solid sphere), which we name the flaglet transform. For this purpose we first construct an exact transform on the radial half-line using damped Laguerre polynomials and develop a corresponding quadrature rule. Combined with the spherical harmonic transform, this approach leads to a sampling theorem on the ball and a novel three-dimensional decomposition which we call the Fourier-Laguerre transform. We relate this new transform to the well-known Fourier-Bessel decomposition and show that band-limitedness in the Fourier-Laguerre basis is a sufficient condition to compute the Fourier-Bessel decomposition exactly. We then construct the flaglet transform on the ball through a harmonic tiling, which is exact thanks to the exactness of the Fourier-Laguerre transform (from which the name flaglets is coined). The corresponding wavelet kernels are well localised in real and Fourier-Laguerre spaces and their angular aperture is invariant under radial translation. We introduce a multiresolution algorithm to perform the flaglet transform rapidly, while capturing all information at each wavelet scale in the minimal number of samples on the ball. Our implementation of these new tools achieves floating-point precision and is made publicly available. We perform numerical experiments demonstrating the speed and accuracy of these libraries and illustrate their capabilities on a simple denoising example.
We construct a directional spin wavelet framework on the sphere by generalising the scalar scale-discretised wavelet transform to signals of arbitrary spin. The resulting framework is the only wavelet framework defined natively on the sphere that is
We develop variational regularization methods which leverage sparsity-promoting priors to solve severely ill posed inverse problems defined on the 3D ball (i.e. the solid sphere). Our method solves the problem natively on the ball and thus does not s
Scale-discretised wavelets yield a directional wavelet framework on the sphere where a signal can be probed not only in scale and position but also in orientation. Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in the
We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and ra
This work presents the construction of a novel spherical wavelet basis designed for incomplete spherical datasets, i.e. datasets which are missing in a particular region of the sphere. The eigenfunctions of the Slepian spatial-spectral concentration