ﻻ يوجد ملخص باللغة العربية
Deterministically integrating single solid-state quantum emitters with photonic nanostructures serves as a key enabling resource in the context of photonic quantum technology. Due to the random spatial location of many widely-used solid-state quantum emitters, a number of positoning approaches for locating the quantum emitters before nanofabrication have been explored in the last decade. Here, we review the working principles of several nanoscale positioning methods and the most recent progress in this field, covering techniques including atomic force microscopy, scanning electron microscopy, confocal microscopy with textit{in situ} lithography, and wide-field fluorescence imaging. A selection of representative device demonstrations with high-performance is presented, including high-quality single-photon sources, bright entangled-photon pairs, strongly-coupled cavity QED systems, and other emerging applications. The challenges in applying positioning techniques to different material systems and opportunities for using these approaches for realizing large-scale quantum photonic devices are discussed.
Hybrid plasmonic nanoemitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challeng
In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1$mu$m) platforms, are highly relevant for nanoscale sensing
We present a quantization scheme for optical systems with absorptive losses, based on an expansion in the complete set of scattering solutions to Maxwells equations. The natural emergence of both absorptive loss and fluctuations without introducing a
One important building block for future integrated nanophotonic devices is the scalable on-chip interfacing of single photon emitters and quantum memories with single optical modes. Here we present the deterministic integration of a single solid-stat
The long dreamed quantum internet would consist of a network of quantum nodes (solid-state or atomic systems) linked by flying qubits, naturally based on photons, travelling over long distances at the speed of light, with negligible decoherence. A ke