ترغب بنشر مسار تعليمي؟ اضغط هنا

Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing

153   0   0.0 ( 0 )
 نشر من قبل Richard Nelz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1$mu$m) platforms, are highly relevant for nanoscale sensing. The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.



قيم البحث

اقرأ أيضاً

We investigate the influence of plasma treatments, especially a 0V-bias, potentially low damage O$_2$ plasma as well as a biased Ar/SF$_6$/O$_2$ plasma on shallow, negative nitrogen vacancy (NV$^-$) centers. We ignite and sustain using our 0V-bias pl asma using purely inductive coupling. To this end, we pre-treat surfaces of high purity chemical vapor deposited single-crystal diamond (SCD). Subsequently, we create $sim$10 nm deep NV$^-$ centers via implantation and annealing. Onto the annealed SCD surface, we fabricate nanopillar structures that efficiently waveguide the photoluminescence (PL) of shallow NV$^-$. Characterizing single NV$^-$ inside these nanopillars, we find that the Ar/SF$_6$/O$_2$ plasma treatment quenches NV$^-$ PL even considering that the annealing and cleaning steps following ion implantation remove any surface termination. In contrast, for our 0V-bias as well as biased O$_2$ plasma, we observe stable NV$^-$ PL and low background fluorescence from the photonic nanostructures.
Powered by the mutual developments in instrumentation, materials andtheoretical descriptions, sensing and imaging capabilities of quantum emitters insolids have significantly increased in the past two decades. Quantum emitters insolids, whose propert ies resemble those of atoms and ions, provide alternative waysto probing natural and artificial nanoscopic systems with minimum disturbance andultimate spatial resolution. Among those emerging quantum emitters, the nitrogen-vacancy (NV) color center in diamond is an outstanding example due to its intrinsicproperties at room temperature (highly-luminescent, photo-stable, biocompatible,highly-coherent spin states). This review article summarizes recent advances andachievements in using NV centers within nano- and single crystal diamonds in sensingand imaging. We also highlight prevalent challenges and material aspects for differenttypes of diamond and outline the main parameters to consider when using color centersas sensors. As a novel sensing resource, we highlight the properties of NV centersas light emitting electrical dipoles and their coupling to other nanoscale dipoles e.g.graphene.
Advancement of diamond based photonic circuitry requires robust fabrication protocols of key components, including diamond resonators and cavities. Here, we present 1D (nanobeam) photonic crystal cavities generated from single crystal diamond membran es utilising a metallic tungsten layer as a restraining, conductive and removable hard mask. The use of tungsten instead of a more conventional silicon oxide layer enables good repeatability and reliability of the fabrication procedures. The process yields high quality diamond cavities with quality factors (Q factors) approaching 10$^$4. Finally, we show that the cavities can be picked up and transferred onto a trenched substrate to realise fully suspended diamond cavities. Our fabrication process demonstrates the capability of diamond membranes as modular components for broader diamond based quantum photonic circuitry.
Individual, luminescent point defects in solids so called color centers are atomic-sized quantum systems enabling sensing and imaging with nanoscale spatial resolution. In this overview, we introduce nanoscale sensing based on individual nitrogen vac ancy (NV) centers in diamond. We discuss two central challenges of the field: First, the creation of highly-coherent, shallow NV centers less than 10 nm below the surface of single-crystal diamond. Second, the fabrication of tip-like photonic nanostructures that enable efficient fluorescence collection and can be used for scanning probe imaging based on color centers with nanoscale resolution.
Optomechanical devices sensitively transduce and actuate motion of nanomechanical structures using light. Single--crystal diamond promises to improve the performance of optomechanical devices, while also providing opportunities to interface nanomecha nics with diamond color center spins and related quantum technologies. Here we demonstrate dissipative waveguide--optomechanical coupling exceeding 35 GHz/nm to diamond nanobeams supporting both optical waveguide modes and mechanical resonances, and use this optomechanical coupling to measure nanobeam displacement with a sensitivity of $9.5$ fm/$sqrt{text{Hz}}$ and optical bandwidth $>150$nm. The nanobeams are fabricated from bulk optical grade single--crystal diamond using a scalable undercut etching process, and support mechanical resonances with quality factor $2.5 times 10^5$ at room temperature, and $7.2 times 10^5$ in cryogenic conditions (5K). Mechanical self--oscillations, resulting from interplay between photothermal and optomechanical effects, are observed with amplitude exceeding 200 nm for sub-$mu$W absorbed optical power, demonstrating the potential for optomechanical excitation and manipulation of diamond nanomechanical structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا