ﻻ يوجد ملخص باللغة العربية
Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $alpha-alpha$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the $alpha$ decay position.
In the framework of rare event searches, the identification of radioactive contaminants in ultra-pure samples is a challenging task, because the signal is often at the same level of the instrumental background. This is a rather common situation for $
The Majorana Demonstrator searches for neutrinoless double-beta decay of $^{76}$Ge using arrays of high-purity germanium detectors. If observed, this process would demonstrate that lepton number is not a conserved quantity in nature, with implication
The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dom
We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from $Eapprox13$ to 150 keV. For atoms we obtained absolute energy resolutions down to $De
The energy threshold of a cryogenic calorimeter can be lowered by reducing its size. This is of importance since the resulting increase in signal rate enables new approaches in rare-event searches, including the detection of MeV mass dark matter and