ﻻ يوجد ملخص باللغة العربية
Over the past decades, more and more methods gain a giant development due to the development of technology. Evolutionary Algorithms are widely used as a heuristic method. However, the budget of computation increases exponentially when the dimensions increase. In this paper, we will use the dimensionality reduction method Principal component analysis (PCA) to reduce the dimension during the iteration of Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which is a good Evolutionary Algorithm that is presented as the numeric type and useful for different kinds of problems. We assess the performance of our new methods in terms of convergence rate on multi-modal problems from the Black-Box Optimization Benchmarking (BBOB) problem set and we also use the framework COmparing Continuous Optimizers (COCO) to see how the new method going and compare it to the other algorithms.
This paper presents a novel mechanism to adapt surrogate-assisted population-based algorithms. This mechanism is applied to ACM-ES, a recently proposed surrogate-assisted variant of CMA-ES. The resulting algorithm, saACM-ES, adjusts online the lifele
Evolution-based neural architecture search requires high computational resources, resulting in long search time. In this work, we propose a framework of applying the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to the neural architecture
This paper addresses the development of a covariance matrix self-adaptation evolution strategy (CMSA-ES) for solving optimization problems with linear constraints. The proposed algorithm is referred to as Linear Constraint CMSA-ES (lcCMSA-ES). It use
Fan et al. [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{47}$(6) (2019) 3009-3031] proposed a distributed principal component analysis (PCA) algorithm to significantly reduce the communication cost between multiple servers. In this pape
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any b