ترغب بنشر مسار تعليمي؟ اضغط هنا

A Covariance Matrix Self-Adaptation Evolution Strategy for Optimization under Linear Constraints

110   0   0.0 ( 0 )
 نشر من قبل Michael Hellwig
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses the development of a covariance matrix self-adaptation evolution strategy (CMSA-ES) for solving optimization problems with linear constraints. The proposed algorithm is referred to as Linear Constraint CMSA-ES (lcCMSA-ES). It uses a specially built mutation operator together with repair by projection to satisfy the constraints. The lcCMSA-ES evolves itself on a linear manifold defined by the constraints. The objective function is only evaluated at feasible search points (interior point method). This is a property often required in application domains such as simulation optimization and finite element methods. The algorithm is tested on a variety of different test problems revealing considerable results.



قيم البحث

اقرأ أيضاً

253 - Ilya Loshchilov 2012
This paper presents a novel mechanism to adapt surrogate-assisted population-based algorithms. This mechanism is applied to ACM-ES, a recently proposed surrogate-assisted variant of CMA-ES. The resulting algorithm, saACM-ES, adjusts online the lifele ngth of the current surrogate model (the number of CMA-ES generations before learning a new surrogate) and the surrogate hyper-parameters. Both heuristics significantly improve the quality of the surrogate model, yielding a significant speed-up of saACM-ES compared to the ACM-ES and CMA-ES baselines. The empirical validation of saACM-ES on the BBOB-2012 noiseless testbed demonstrates the efficiency and the scalability w.r.t the problem dimension and the population size of the proposed approach, that reaches new best results on some of the benchmark problems.
Evolution-based neural architecture search requires high computational resources, resulting in long search time. In this work, we propose a framework of applying the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to the neural architecture search problem called CMANAS, which achieves better results than previous evolution-based methods while reducing the search time significantly. The architectures are modelled using a normal distribution, which is updated using CMA-ES based on the fitness of the sampled population. We used the accuracy of a trained one shot model (OSM) on the validation data as a prediction of the fitness of an individual architecture to reduce the search time. We also used an architecture-fitness table (AF table) for keeping record of the already evaluated architecture, thus further reducing the search time. CMANAS finished the architecture search on CIFAR-10 with the top-1 test accuracy of 97.44% in 0.45 GPU day and on CIFAR-100 with the top-1 test accuracy of 83.24% for 0.6 GPU day on a single GPU. The top architectures from the searches on CIFAR-10 and CIFAR-100 were then transferred to ImageNet, achieving the top-5 accuracy of 92.6% and 92.1%, respectively.
66 - Yangjie Mei , Hao Wang 2021
Over the past decades, more and more methods gain a giant development due to the development of technology. Evolutionary Algorithms are widely used as a heuristic method. However, the budget of computation increases exponentially when the dimensions increase. In this paper, we will use the dimensionality reduction method Principal component analysis (PCA) to reduce the dimension during the iteration of Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which is a good Evolutionary Algorithm that is presented as the numeric type and useful for different kinds of problems. We assess the performance of our new methods in terms of convergence rate on multi-modal problems from the Black-Box Optimization Benchmarking (BBOB) problem set and we also use the framework COmparing Continuous Optimizers (COCO) to see how the new method going and compare it to the other algorithms.
192 - Alexandre Chotard 2014
This paper analyses a $(1,lambda)$-Evolution Strategy, a randomised comparison-based adaptive search algorithm, on a simple constraint optimisation problem. The algorithm uses resampling to handle the constraint and optimizes a linear function with a linear constraint. Two cases are investigated: first the case where the step-size is constant, and second the case where the step-size is adapted using path length control. We exhibit for each case a Markov chain whose stability analysis would allow us to deduce the divergence of the algorithm depending on its internal parameters. We show divergence at a constant rate when the step-size is constant. We sketch that with step-size adaptation geometric divergence takes place. Our results complement previous studies where stability was assumed.
In this paper, we study reinforcement learning (RL) algorithms to solve real-world decision problems with the objective of maximizing the long-term reward as well as satisfying cumulative constraints. We propose a novel first-order policy optimizatio n method, Interior-point Policy Optimization (IPO), which augments the objective with logarithmic barrier functions, inspired by the interior-point method. Our proposed method is easy to implement with performance guarantees and can handle general types of cumulative multiconstraint settings. We conduct extensive evaluations to compare our approach with state-of-the-art baselines. Our algorithm outperforms the baseline algorithms, in terms of reward maximization and constraint satisfaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا