ﻻ يوجد ملخص باللغة العربية
Mechanotransduction, the biological response to mechanical stress, is often initiated by the activation of mechanosensitive (MS) proteins upon mechanically induced deformations of the cell membrane. A current challenge to fully understand this process is to predict how lipid bilayers deform upon application of mechanical stress. In this context, it is now well established that anionic lipids influence the function of many proteins. Here, we test the hypothesize that anionic lipids could indirectly modulate MS proteins by alteration of the lipid bilayer mechanical properties. Using all-atom molecular dynamics simulations, we computed the bilayer bending rigidity (K_C), the area compressibility (K_A), and the surface shear viscosity ({eta}_m) of phosphocholine (PC) lipid bilayers containing or not phosphatidylserine (PS) or phosphatidylinositol bisphosphate (PIP2) at physiological concentrations in the lower leaflet. Tensionless leaflets were first checked for each asymmetric bilayer model, and a formula for embedding an asymmetric channel in an asymmetric bilayer is proposed. Results from two different sized bilayers show consistently that the addition of 20% surface charge in the lower leaflet of PC bilayer by PIP2 has minimal impact on its mechanical properties, while PS reduced the bilayer bending rigidity by 22%. As a comparison, supplementing the PIP2-enriched PC membrane with 30% cholesterol, a known rigidifying steroid lipid, produces a significant increase in all three mechanical constants. Analysis of pairwise splay moduli suggests that the effect of anionic lipids on bilayer bending rigidity largely depends on the number of anionic lipid pairs formed during simulations. The potential implication of bilayer bending rigidity is discussed in the framework of mechanosensitive Piezo channels.
Triply Periodic Minimal Surfaces (TPMS) possess locally minimized surface area under the constraint of periodic boundary conditions. Different families of surfaces were obtained with different topologies satisfying such conditions. Examples of such f
Room Temperature Ionic Liquids (RTILs) have attracted much of the attention of the scientific community in the past decade due the their novel and highly customizable properties. Nonetheless their high viscosities pose serious limitations to the use
Helical amorphous nanosprings have attracted particular interest due to their special mechanical properties. In this work we present a simple model, within the framework of the Kirchhoff rod model, for investigating the structural properties of nanos
Schwarzites are porous crystalline structures with Gaussian negative curvature. In this work, we investigated the mechanical behavior and energy absorption properties of two carbon-based diamond schwarzites (D688 and D8bal). We carried out fully atom
We devise automated workflows for the calculation of Helmholtz and Gibbs free energies and their temperature and pressure dependence and provide the corresponding computational tools. We employ non-equilibrium thermodynamics for evaluating the free e