ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical properties of amorphous nanosprings

84   0   0.0 ( 0 )
 نشر من قبل Alexandre Fontes da Fonseca
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Helical amorphous nanosprings have attracted particular interest due to their special mechanical properties. In this work we present a simple model, within the framework of the Kirchhoff rod model, for investigating the structural properties of nanosprings having asymmetric cross section. We have derived expressions that can be used to obtain the Youngs modulus and Poissons ratio of the nanospring material composite. We also address the importance of the presence of a catalyst in the growth process of amorphous nanosprings in terms of the stability of helical rods.



قيم البحث

اقرأ أيضاً

Numerical Simulations are employed to create amorphous nano-films of a chosen thickness on a crystalline substrate which induces strain on the film. The films are grown by a vapor deposition technique which was recently developed to create very stabl e glassy films. Using the exact relations between the Hessian matrix and the shear and bulk moduli we explore the mechanical properties of the nano-films as a function of the density of the substrate and the film thickness. The existence of the substrate dominates the mechanical properties of the combined substrate-film system. Scaling concepts are then employed to achieve data collapse in a wide range of densities and film thicknesses.
Structural heterogeneity of amorphous solids present difficult challenges that stymie the prediction of plastic events, which are intimately connected to their mechanical behavior. Based on a perturbation analysis of the potential energy landscape, w e derive the atomic nonaffinity as an indicator with intrinsic orientation, which quantifies the contribution of an individual atom to the total nonaffine modulus of the system. We find that the atomic nonaffinity can efficiently characterize the locations of the shear transformation zones, with a predicative capacity comparable to the best indicators. More importantly, the atomic nonaffinity, combining the sign of third order derivative of energy with respect to coordinates, reveals an intrinsic softest shear orientation. By analyzing the angle between this orientation and the shear loading direction, it is possible to predict the protocol-dependent response of plastic events. Employing the new method, the distribution of orientations of shear transformation zones in a model two-dimensional amorphous solids can be measured. The resulting plastic events can be understood from a simple model of independent plastic events occurring at variously oriented shear transformation zones. These results shed light on the characterization and prediction of the mechanical response of amorphous solids.
Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks, recent experimental evidence favours th e competing crystallite model in the case of amorphous silicon. In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.
Recently, a new class of carbon allotrope called protomene was proposed. This new structure is composed of sp2 and sp3 carbon-bonds. Topologically, protomene can be considered as an sp3 carbon structure (~80% of this bond type) doped by sp2 carbons. First-principles simulations have shown that protomene presents an electronic bandgap of ~3.4 eV. However, up to now, its mechanical properties have not been investigated. In this work, we have investigated protomene mechanical behavior under tensile strain through fully atomistic reactive molecular dynamics simulations using the ReaxFF force field, as available in the LAMMPS code. At room temperature, our results show that the protomene is very stable and the obtained ultimate strength and ultimate stress indicates an anisotropic behavior. The highest ultimate strength was obtained for the x-direction, with a value of ~110 GPa. As for the ultimate strain, the highest one was for the z-direction (~25% of strain) before protomene mechanical fracture.
The dynamic response of dipole skyrmions in Fe/Gd multilayer films is investigated by ferromagnetic resonance measurements and compared to micromagnetic simulations. We detail thickness and temperature dependent studies of the observed modes as well as the effects of magnetic field history on the resonant spectra. Correlation between the modes and the magnetic phase maps constructed from real-space imaging and scattering patterns allows us to conclude the resonant modes arise from local topological features such as dipole skyrmions but does not depend on the collective response of a closed packed lattice of these chiral textures. Using, micromagnetic modeling, we are able to quantitatively reproduce our experimental observations which suggests the existence of localized spin-wave modes that are dependent on the helicity of the dipole skyrmion. We identify four localized spin wave excitations for the skyrmions that are excited under either in-plane or out-of-plane r.f. fields. Lastly we show that dipole skyrmions and non-chiral bubble domains exhibit qualitatively different localized spin wave modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا