ترغب بنشر مسار تعليمي؟ اضغط هنا

Connected Learning, Collapsed Contexts

86   0   0.0 ( 0 )
 نشر من قبل Caroline Pitt
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Caroline Pitt




اسأل ChatGPT حول البحث

Researchers and designers have incorporated social media affordances into learning technologies to engage young people and support personally relevant learning, but youth may reject these attempts because they do not meet user expectations. Through in-depth case studies, we explore the sociotechnical ecosystems of six teens (ages 15-18) working at a science center that had recently introduced a digital badge system to track and recognize their learning. By analyzing interviews, observations, ecological momentary assessments, and system data, we examined tensions in how badges as connected learning technologies operate in teens sociotechnical ecosystems. We found that, due to issues of unwanted context collapse and incongruent identity representations, youth only used certain affordances of the system and did so sporadically. Additionally, we noted that some features seemed to prioritize values of adult stakeholders over youth. Using badges as a lens, we reveal critical tensions and offer design recommendations for networked learning technologies.



قيم البحث

اقرأ أيضاً

Curiosity is a vital metacognitive skill in educational contexts. Yet, little is known about how social factors influence curiosity in group work. We argue that curiosity is evoked not only through individual, but also interpersonal activities, and p resent what we believe to be the first theoretical framework that articulates an integrated socio-cognitive account of curiosity based on literature spanning psychology, learning sciences and group dynamics, along with empirical observation of small-group science activity in an informal learning environment. We make a bipartite distinction between individual and interpersonal functions that contribute to curiosity, and multimodal behaviors that fulfill these functions. We validate the proposed framework by leveraging a longitudinal latent variable modeling approach. Findings confirm positive predictive relationship of the latent variables of individual and interpersonal functions on curiosity, with the interpersonal functions exercising a comparatively stronger influence. Prominent behavioral realizations of these functions are also discovered in a data-driven way. This framework is a step towards designing learning technologies that can recognize and evoke curiosity during learning in social contexts.
In this paper, we explore the potential impact of Internet of Things (IoT) technology may have on the cosplay community. We developed a costume (an IoT Skullfort) and embedded IoT technology to enhance its capabilities and user interactions. Sensing technologies are widely used in many different wearable domains including cosplay scenarios. However, in most of these scenarios, typical interaction pattern is that the costume responds to its environment or the players behaviour (e.g., colour of lights may get changed when player moves hands). In contrast, our research focuses on exploring scenarios where the audience (third party) get to manipulate the costume behaviour (e.g., the audience get to change the colour of the Skullfort using a mobile application). We believe such an audience (third party) influenced cosplay brings new opportunities for enhanced entertainment. However, it also creates significant challenges. We report the results gathered through a focus group conducted in collaboration with cosplay community experts.
This paper presents the designing and testing of PizzaBox, a 3D printed, interactive food ordering system that aims to differ from conventional food ordering systems and provide an entertaining and unique experience when ordering a pizza by incorpora ting underlying technologies that support ubiquitous computing. The PizzaBox has gone through both low and medium fidelity testing while working collaboratively with participants to co-design and refine a product that is approachable to all age groups while maintaining a simple process for ordering food from start to finish. Final testing was conducted at an independent pizzeria where interviews with participants lead us to develop four discussion themes 1) usability and end user engagement, 2) towards connected real-time products and services, 3) healthy eating, 4) evolution of food ordering systems. Our interviews show that in general, PizzaBox would have a greater appeal to a younger audience by providing a fantasy of helping in the creation and baking of the pizza but also has a novelty value that all ages would enjoy. We investigate the effect that the PizzaBox has in encouraging new healthy habits or promoting a healthier lifestyle as well as how we can improve PizzaBox to better encourage these lifestyle changes.
With the development of advanced communication technology, connected vehicles become increasingly popular in our transportation systems, which can conduct cooperative maneuvers with each other as well as road entities through vehicle-to-everything co mmunication. A lot of research interests have been drawn to other building blocks of a connected vehicle system, such as communication, planning, and control. However, less research studies were focused on the human-machine cooperation and interface, namely how to visualize the guidance information to the driver as an advanced driver-assistance system (ADAS). In this study, we propose an augmented reality (AR)-based ADAS, which visualizes the guidance information calculated cooperatively by multiple connected vehicles. An unsignalized intersection scenario is adopted as the use case of this system, where the driver can drive the connected vehicle crossing the intersection under the AR guidance, without any full stop at the intersection. A simulation environment is built in Unity game engine based on the road network of San Francisco, and human-in-the-loop (HITL) simulation is conducted to validate the effectiveness of our proposed system regarding travel time and energy consumption.
With the tremendous progress in sensing and IoT infrastructure, it is foreseeable that IoT systems will soon be available for commercial markets, such as in peoples homes. In this paper, we present a deployment study using sensors attached to househo ld objects to capture the resourcefulness of three individuals. The concept of resourcefulness highlights the ability of humans to repurpose objects spontaneously for a different use case than was initially intended. It is a crucial element for human health and wellbeing, which is of great interest for various aspects of HCI and design research. Traditionally, resourcefulness is captured through ethnographic practice. Ethnography can only provide sparse and often short duration observations of human experience, often relying on participants being aware of and remembering behaviours or thoughts they need to report on. Our hypothesis is that resourcefulness can also be captured through continuously monitoring objects being used in everyday life. We developed a system that can record object movement continuously and deployed them in homes of three elderly people for over two weeks. We explored the use of probabilistic topic models to analyze the collected data and identify common patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا