ترغب بنشر مسار تعليمي؟ اضغط هنا

PizzaBox: Studying Internet Connected Physical Object Manipulation based Food Ordering

60   0   0.0 ( 0 )
 نشر من قبل Charith Perera
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the designing and testing of PizzaBox, a 3D printed, interactive food ordering system that aims to differ from conventional food ordering systems and provide an entertaining and unique experience when ordering a pizza by incorporating underlying technologies that support ubiquitous computing. The PizzaBox has gone through both low and medium fidelity testing while working collaboratively with participants to co-design and refine a product that is approachable to all age groups while maintaining a simple process for ordering food from start to finish. Final testing was conducted at an independent pizzeria where interviews with participants lead us to develop four discussion themes 1) usability and end user engagement, 2) towards connected real-time products and services, 3) healthy eating, 4) evolution of food ordering systems. Our interviews show that in general, PizzaBox would have a greater appeal to a younger audience by providing a fantasy of helping in the creation and baking of the pizza but also has a novelty value that all ages would enjoy. We investigate the effect that the PizzaBox has in encouraging new healthy habits or promoting a healthier lifestyle as well as how we can improve PizzaBox to better encourage these lifestyle changes.



قيم البحث

اقرأ أيضاً

In this paper, we explore the potential impact of Internet of Things (IoT) technology may have on the cosplay community. We developed a costume (an IoT Skullfort) and embedded IoT technology to enhance its capabilities and user interactions. Sensing technologies are widely used in many different wearable domains including cosplay scenarios. However, in most of these scenarios, typical interaction pattern is that the costume responds to its environment or the players behaviour (e.g., colour of lights may get changed when player moves hands). In contrast, our research focuses on exploring scenarios where the audience (third party) get to manipulate the costume behaviour (e.g., the audience get to change the colour of the Skullfort using a mobile application). We believe such an audience (third party) influenced cosplay brings new opportunities for enhanced entertainment. However, it also creates significant challenges. We report the results gathered through a focus group conducted in collaboration with cosplay community experts.
Assessing the performance of human movements during teleoperation and virtual reality is a challenging problem, particularly in 3D space due to complex spatial settings. Despite the presence of a multitude of metrics, a compelling standardized 3D met ric is yet missing, aggravating inter-study comparability between different studies. Hence, evaluating human performance in virtual environments is a long-standing research goal, and a performance metric that combines two or more metrics under one formulation remains largely unexplored, particularly in higher dimensions. The absence of such a metric is primarily attributed to the discrepancies between pointing and manipulation, the complex spatial variables in 3D, and the combination of translational and rotational movements altogether. In this work, four experiments were designed and conducted with progressively higher spatial complexity to study and compare existing metrics thoroughly. The research goal was to quantify the difficulty of these 3D tasks and model human performance sufficiently in full 3D peripersonal space. Consequently, a new model extension has been proposed and its applicability has been validated across all the experimental results, showing improved modelling and representation of human performance in combined movements of 3D object pointing and manipulation tasks than existing work. Lastly, the implications on 3D interaction, teleoperation and object task design in virtual reality are discussed.
Background: The deployment of various networks (e.g., Internet of Things (IoT) and mobile networks) and databases (e.g., nutrition tables and food compositional databases) in the food system generates massive information silos due to the well-known d ata harmonization problem. The food knowledge graph provides a unified and standardized conceptual terminology and their relationships in a structured form and thus can transform these information silos across the whole food system to a more reusable globally digitally connected Internet of Food, enabling every stage of the food system from farm-to-fork. Scope and approach: We review the evolution of food knowledge organization, from food classification, food ontology to food knowledge graphs. We then discuss the progress in food knowledge graphs from several representative applications. We finally discuss the main challenges and future directions. Key findings and conclusions: Our comprehensive summary of current research on food knowledge graphs shows that food knowledge graphs play an important role in food-oriented applications, including food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization, food traceability, and food machinery intelligent manufacturing. Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
77 - Siwei Chen , Xiao Ma , Yunfan Lu 2021
This paper presents Particle-based Object Manipulation (Prompt), a new approach to robot manipulation of novel objects ab initio, without prior object models or pre-training on a large object data set. The key element of Prompt is a particle-based ob ject representation, in which each particle represents a point in the object, the local geometric, physical, and other features of the point, and also its relation with other particles. Like the model-based analytic approaches to manipulation, the particle representation enables the robot to reason about the objects geometry and dynamics in order to choose suitable manipulation actions. Like the data-driven approaches, the particle representation is learned online in real-time from visual sensor input, specifically, multi-view RGB images. The particle representation thus connects visual perception with robot control. Prompt combines the benefits of both model-based reasoning and data-driven learning. We show empirically that Prompt successfully handles a variety of everyday objects, some of which are transparent. It handles various manipulation tasks, including grasping, pushing, etc,. Our experiments also show that Prompt outperforms a state-of-the-art data-driven grasping method on the daily objects, even though it does not use any offline training data.
With the tremendous progress in sensing and IoT infrastructure, it is foreseeable that IoT systems will soon be available for commercial markets, such as in peoples homes. In this paper, we present a deployment study using sensors attached to househo ld objects to capture the resourcefulness of three individuals. The concept of resourcefulness highlights the ability of humans to repurpose objects spontaneously for a different use case than was initially intended. It is a crucial element for human health and wellbeing, which is of great interest for various aspects of HCI and design research. Traditionally, resourcefulness is captured through ethnographic practice. Ethnography can only provide sparse and often short duration observations of human experience, often relying on participants being aware of and remembering behaviours or thoughts they need to report on. Our hypothesis is that resourcefulness can also be captured through continuously monitoring objects being used in everyday life. We developed a system that can record object movement continuously and deployed them in homes of three elderly people for over two weeks. We explored the use of probabilistic topic models to analyze the collected data and identify common patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا