ﻻ يوجد ملخص باللغة العربية
Projection-based iterative methods for solving large over-determined linear systems are well-known for their simplicity and computational efficiency. It is also known that the correct choice of a sketching procedure (i.e., preprocessing steps that reduce the dimension of each iteration) can improve the performance of iterative methods in multiple ways, such as, to speed up the convergence of the method by fighting inner correlations of the system, or to reduce the variance incurred by the presence of noise. In the current work, we show that sketching can also help us to get better theoretical guarantees for the projection-based methods. Specifically, we use good properties of Gaussian sketching to prove an accelerated convergence rate of the sketched relaxation (also known as Motzkins) method. The new estimates hold for linear systems of arbitrary structure. We also provide numerical experiments in support of our theoretical analysis of the sketched relaxation method.
Often in applications ranging from medical imaging and sensor networks to error correction and data science (and beyond), one needs to solve large-scale linear systems in which a fraction of the measurements have been corrupted. We consider solving s
With a quite different way to determine the working rows, we propose a novel greedy Kaczmarz method for solving consistent linear systems. Convergence analysis of the new method is provided. Numerical experiments show that, for the same accuracy, our
In this paper, combining count sketch and maximal weighted residual Kaczmarz method, we propose a fast randomized algorithm for large overdetermined linear systems. Convergence analysis of the new algorithm is provided. Numerical experiments show tha
In this paper, we present a generic methodology for the efficient numerical approximation of the density function of the McKean-Vlasov SDEs. The weak error analysis for the projected process motivates us to combine the iterative Multilevel Monte Carl
We present a class of reduced basis (RB) methods for the iterative solution of parametrized symmetric positive-definite (SPD) linear systems. The essential ingredients are a Galerkin projection of the underlying parametrized system onto a reduced bas