ترغب بنشر مسار تعليمي؟ اضغط هنا

Fusing Higher-Order Features in Graph Neural Networks for Skeleton-Based Action Recognition

266   0   0.0 ( 0 )
 نشر من قبل Zhenyue Qin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Skeleton sequences are lightweight and compact, thus are ideal candidates for action recognition on edge devices. Recent skeleton-based action recognition methods extract features from 3D joint coordinates as spatial-temporal cues, using these representations in a graph neural network for feature fusion to boost recognition performance. The use of first- and second-order features, ie{} joint and bone representations, has led to high accuracy. Nonetheless, many models are still confused by actions that have similar motion trajectories. To address these issues, we propose fusing third-order features in the form of angular encoding into modern architectures to robustly capture the relationships between joints and body parts. This simple fusion with popular spatial-temporal graph neural networks achieves new state-of-the-art accuracy in two large benchmarks, including NTU60 and NTU120, while employing fewer parameters and reduced run time. Our source code is publicly available at: https://github.com/ZhenyueQin/Angular-Skeleton-Encoding.



قيم البحث

اقرأ أيضاً

292 - Maosen Li , Siheng Chen , Xu Chen 2019
Action recognition with skeleton data has recently attracted much attention in computer vision. Previous studies are mostly based on fixed skeleton graphs, only capturing local physical dependencies among joints, which may miss implicit joint correla tions. To capture richer dependencies, we introduce an encoder-decoder structure, called A-link inference module, to capture action-specific latent dependencies, i.e. actional links, directly from actions. We also extend the existing skeleton graphs to represent higher-order dependencies, i.e. structural links. Combing the two types of links into a generalized skeleton graph, we further propose the actional-structural graph convolution network (AS-GCN), which stacks actional-structural graph convolution and temporal convolution as a basic building block, to learn both spatial and temporal features for action recognition. A future pose prediction head is added in parallel to the recognition head to help capture more detailed action patterns through self-supervision. We validate AS-GCN in action recognition using two skeleton data sets, NTU-RGB+D and Kinetics. The proposed AS-GCN achieves consistently large improvement compared to the state-of-the-art methods. As a side product, AS-GCN also shows promising results for future pose prediction.
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model. More attention is paid to employing GCN in Skeleton-Based action recognition. But existing methods based on GCNs have two problems. First, the consistency of temporal and spatial features is ignored for extracting features node by node and frame by frame. To obtain spatiotemporal features simultaneously, we design a generic representation of skeleton sequences for action recognition and propose a novel model called Temporal Graph Networks (TGN). Secondly, the adjacency matrix of the graph describing the relation of joints is mostly dependent on the physical connection between joints. To appropriately describe the relations between joints in the skeleton graph, we propose a multi-scale graph strategy, adopting a full-scale graph, part-scale graph, and core-scale graph to capture the local features of each joint and the contour features of important joints. Experiments were carried out on two large datasets and results show that TGN with our graph strategy outperforms state-of-the-art methods.
103 - Maosen Li , Siheng Chen , Xu Chen 2019
3D skeleton-based action recognition and motion prediction are two essential problems of human activity understanding. In many previous works: 1) they studied two tasks separately, neglecting internal correlations; 2) they did not capture sufficient relations inside the body. To address these issues, we propose a symbiotic model to handle two tasks jointly; and we propose two scales of graphs to explicitly capture relations among body-joints and body-parts. Together, we propose symbiotic graph neural networks, which contain a backbone, an action-recognition head, and a motion-prediction head. Two heads are trained jointly and enhance each other. For the backbone, we propose multi-branch multi-scale graph convolution networks to extract spatial and temporal features. The multi-scale graph convolution networks are based on joint-scale and part-scale graphs. The joint-scale graphs contain actional graphs, capturing action-based relations, and structural graphs, capturing physical constraints. The part-scale graphs integrate body-joints to form specific parts, representing high-level relations. Moreover, dual bone-based graphs and networks are proposed to learn complementary features. We conduct extensive experiments for skeleton-based action recognition and motion prediction with four datasets, NTU-RGB+D, Kinetics, Human3.6M, and CMU Mocap. Experiments show that our symbiotic graph neural networks achieve better performances on both tasks compared to the state-of-the-art methods.
Skeleton-based human action recognition has attracted much attention with the prevalence of accessible depth sensors. Recently, graph convolutional networks (GCNs) have been widely used for this task due to their powerful capability to model graph da ta. The topology of the adjacency graph is a key factor for modeling the correlations of the input skeletons. Thus, previous methods mainly focus on the design/learning of the graph topology. But once the topology is learned, only a single-scale feature and one transformation exist in each layer of the networks. Many insights, such as multi-scale information and multiple sets of transformations, that have been proven to be very effective in convolutional neural networks (CNNs), have not been investigated in GCNs. The reason is that, due to the gap between graph-structured skeleton data and conventional image/video data, it is very challenging to embed these insights into GCNs. To overcome this gap, we reinvent the split-transform-merge strategy in GCNs for skeleton sequence processing. Specifically, we design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition. Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths. Extensive experiments demonstrate that our network outperforms state-of-the-art methods by a significant margin with only 1/5 of the parameters and 1/10 of the FLOPs. Code is available at https://github.com/yellowtownhz/STIGCN.
Skeleton-based human action recognition has attracted great interest thanks to the easy accessibility of the human skeleton data. Recently, there is a trend of using very deep feedforward neural networks to model the 3D coordinates of joints without considering the computational efficiency. In this paper, we propose a simple yet effective semantics-guided neural network (SGN) for skeleton-based action recognition. We explicitly introduce the high level semantics of joints (joint type and frame index) into the network to enhance the feature representation capability. In addition, we exploit the relationship of joints hierarchically through two modules, i.e., a joint-level module for modeling the correlations of joints in the same frame and a framelevel module for modeling the dependencies of frames by taking the joints in the same frame as a whole. A strong baseline is proposed to facilitate the study of this field. With an order of magnitude smaller model size than most previous works, SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets. The source code is available at https://github.com/microsoft/SGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا