ﻻ يوجد ملخص باللغة العربية
Action recognition with skeleton data has recently attracted much attention in computer vision. Previous studies are mostly based on fixed skeleton graphs, only capturing local physical dependencies among joints, which may miss implicit joint correlations. To capture richer dependencies, we introduce an encoder-decoder structure, called A-link inference module, to capture action-specific latent dependencies, i.e. actional links, directly from actions. We also extend the existing skeleton graphs to represent higher-order dependencies, i.e. structural links. Combing the two types of links into a generalized skeleton graph, we further propose the actional-structural graph convolution network (AS-GCN), which stacks actional-structural graph convolution and temporal convolution as a basic building block, to learn both spatial and temporal features for action recognition. A future pose prediction head is added in parallel to the recognition head to help capture more detailed action patterns through self-supervision. We validate AS-GCN in action recognition using two skeleton data sets, NTU-RGB+D and Kinetics. The proposed AS-GCN achieves consistently large improvement compared to the state-of-the-art methods. As a side product, AS-GCN also shows promising results for future pose prediction.
Skeleton-based human action recognition has attracted much attention with the prevalence of accessible depth sensors. Recently, graph convolutional networks (GCNs) have been widely used for this task due to their powerful capability to model graph da
Graph convolutional networks (GCNs) achieve promising performance for skeleton-based action recognition. However, in most GCN-based methods, the spatial-temporal graph convolution is strictly restricted by the graph topology while only captures the s
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model. More attention is paid to employing GCN in Skeleton-Based action recognition. But existing methods based on GCNs have
A collection of approaches based on graph convolutional networks have proven success in skeleton-based action recognition by exploring neighborhood information and dense dependencies between intra-frame joints. However, these approaches usually ignor
Human action recognition from skeleton data, fueled by the Graph Convolutional Network (GCN), has attracted lots of attention, due to its powerful capability of modeling non-Euclidean structure data. However, many existing GCN methods provide a pre-d