ﻻ يوجد ملخص باللغة العربية
We show that all compact four-dimensional Hamiltonian $S^1$-spaces can be extended to a completely integrable system on the same manifold such that all singularities are non-degenerate, except possibly for a finite number of degenerate orbits of parabolic (also called cuspidal) type -- we call such systems hypersemitoric. More precisely, given any compact four dimensional Hamiltonian $S^1$-space $(M,omega,J)$ we show that there exists a smooth $Hcolon Mtomathbb{R}$ such that $(M,omega,(J,H))$ is a completely integrable system of hypersemitoric type. Hypersemitoric systems generalize semitoric systems. In addition to elliptic-elliptic, elliptic-regular, and focus-focus singular points which can occur in semitoric systems, hypersemitoric systems may also have hyperbolic-regular and hyperbolic-elliptic singular points (hyperbolic-hyperbolic points cannot appear due to the presence of the global $S^1$-action) and moreover degenerate singular points of a relatively tame type called parabolic. Admitting the existence of degenerate points is necessary since there exist compact four-dimensional Hamiltonian $S^1$-spaces whose extensions must include degenerate singular points of some kind as we show in the present paper. Parabolic points are among the most common and natural degenerate points, and we show that it is sufficient to only admit these degenerate points in order to extend all Hamiltonian $S^1$-spaces. In this sense, hypersemitoric systems are thus the nicest and smallest class of systems to which all Hamiltonian $S^1$-spaces can be extended. Moreover, we prove several foundational results about these systems, such as the non-existence of loops of hyperbolic-regular points and properties about their fibers.
This work is devoted to a systematic study of symplectic convexity for integrable Hamiltonian systems with elliptic and focus-focus singularities. A distinctive feature of these systems is that their base spaces are still smooth manifolds (with bound
In the spirit of recent work of Harada-Kaveh and Nishinou-Nohara-Ueda, we study the symplectic geometry of Popovs horospherical degenerations of complex algebraic varieties with the action of a complex linearly reductive group. We formulate an intrin
We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the
We find and study a two-parameter family of coupled Painleve II systems in dimension four with affine Weyl group symmetry of several types. Moreover, we find a three-parameter family of polynomial Hamiltonian systems in two variables $t,s$. Setting $
We report on transcritical bifurcations of periodic orbits in non-integrable two-dimensional Hamiltonian systems. We discuss their existence criteria and some of their properties using a recent mathematical description of transcritical bifurcations i