ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending compact Hamiltonian $S^1$-spaces to integrable systems with mild degeneracies in dimension four

51   0   0.0 ( 0 )
 نشر من قبل Joseph Palmer
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that all compact four-dimensional Hamiltonian $S^1$-spaces can be extended to a completely integrable system on the same manifold such that all singularities are non-degenerate, except possibly for a finite number of degenerate orbits of parabolic (also called cuspidal) type -- we call such systems hypersemitoric. More precisely, given any compact four dimensional Hamiltonian $S^1$-space $(M,omega,J)$ we show that there exists a smooth $Hcolon Mtomathbb{R}$ such that $(M,omega,(J,H))$ is a completely integrable system of hypersemitoric type. Hypersemitoric systems generalize semitoric systems. In addition to elliptic-elliptic, elliptic-regular, and focus-focus singular points which can occur in semitoric systems, hypersemitoric systems may also have hyperbolic-regular and hyperbolic-elliptic singular points (hyperbolic-hyperbolic points cannot appear due to the presence of the global $S^1$-action) and moreover degenerate singular points of a relatively tame type called parabolic. Admitting the existence of degenerate points is necessary since there exist compact four-dimensional Hamiltonian $S^1$-spaces whose extensions must include degenerate singular points of some kind as we show in the present paper. Parabolic points are among the most common and natural degenerate points, and we show that it is sufficient to only admit these degenerate points in order to extend all Hamiltonian $S^1$-spaces. In this sense, hypersemitoric systems are thus the nicest and smallest class of systems to which all Hamiltonian $S^1$-spaces can be extended. Moreover, we prove several foundational results about these systems, such as the non-existence of loops of hyperbolic-regular points and properties about their fibers.



قيم البحث

اقرأ أيضاً

This work is devoted to a systematic study of symplectic convexity for integrable Hamiltonian systems with elliptic and focus-focus singularities. A distinctive feature of these systems is that their base spaces are still smooth manifolds (with bound ary and corners), similarly to the toric case, but their associated integral affine structures are singular, with non-trivial monodromy, due to focus singularities. We obtain a series of convexity results, both positive and negative, for such singular integral affine base spaces. In particular, near a focus singular point, they are locally convex and the local-global convexity principle still applies. They are also globally convex under some natural additional conditions. However, when the monodromy is sufficiently big then the local-global convexity principle breaks down, and the base spaces can be globally non-convex even for compact manifolds. As one of surprising examples, we construct a 2-dimensional integral affine black hole, which is locally convex but for which a straight ray from the center can never escape.
In the spirit of recent work of Harada-Kaveh and Nishinou-Nohara-Ueda, we study the symplectic geometry of Popovs horospherical degenerations of complex algebraic varieties with the action of a complex linearly reductive group. We formulate an intrin sic symplectic contraction of a Hamiltonian space, which is a surjective, continuous map onto a new Hamiltonian space that is a symplectomorphism on an explicitly defined dense open subspace. This map is given by a precise formula, using techniques from the theory of symplectic reduction and symplectic implosion. We then show, using the Vinberg monoid, that the gradient-Hamiltonian flow for a horospherical degeneration of an algebraic variety gives rise to this contraction from a general fiber to the special fiber. We apply this construction to branching problems in representation theory, and finally we show how the Gelfand-Tsetlin integrable system can be understood to arise this way.
We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.
381 - Yusuke Sasano 2011
We find and study a two-parameter family of coupled Painleve II systems in dimension four with affine Weyl group symmetry of several types. Moreover, we find a three-parameter family of polynomial Hamiltonian systems in two variables $t,s$. Setting $ s=0$, we can obtain an autonomous version of the coupled Painleve II systems. We also show its symmetry and holomorphy conditions.
We report on transcritical bifurcations of periodic orbits in non-integrable two-dimensional Hamiltonian systems. We discuss their existence criteria and some of their properties using a recent mathematical description of transcritical bifurcations i n families of symplectic maps. We then present numerical examples of transcritical bifurcations in a class of generalized Henon-Heiles Hamiltonians and illustrate their stabilities and unfoldings under various perturbations of the Hamiltonians. We demonstrate that for Hamiltonians containing straight-line librating orbits, the transcritical bifurcation of these orbits is the typical case which occurs also in the absence of any discrete symmetries, while their isochronous pitchfork bifurcation is an exception. We determine the normal forms of both types of bifurcations and derive the uniform approximation required to include transcritically bifurcating orbits in the semiclassical trace formula for the density of states of the quantum Hamiltonian. We compute the coarse-grained density of states in a specific example both semiclassically and quantum mechanically and find excellent agreement of the results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا