ترغب بنشر مسار تعليمي؟ اضغط هنا

L{e}vy-walk-like Langevin dynamics affected by a time-dependent force

168   0   0.0 ( 0 )
 نشر من قبل Weihua Deng Professor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

L{e}vy walk is a popular and more `physical model to describe the phenomena of superdiffusion, because of its finite velocity. The movements of particles are under the influences of external potentials almost at anytime and anywhere. In this paper, we establish a Langevin system coupled with a subordinator to describe the L{e}vy walk in the time-dependent periodic force field. The effects of external force are detected and carefully analyzed, including nonzero first moment (even though the force is periodic), adding an additional dispersion on the particle position, the consistent influence on the ensemble- and time-averaged mean-squared displacement, etc. Besides, the generalized Klein-Kramers equation is obtained, not only for the time-dependent force but also for space-dependent one.



قيم البحث

اقرأ أيضاً

Levy walk process is one of the most effective models to describe superdiffusion, which underlies some important movement patterns and has been widely observed in the micro and macro dynamics. From the perspective of random walk theory, here we inves tigate the dynamics of Levy walks under the influences of the constant force field and the one combined with harmonic potential. Utilizing Hermite polynomial approximation to deal with the spatiotemporally coupled analysis challenges, some striking features are detected, including non Gaussian stationary distribution, faster diffusion, and still strongly anomalous diffusion, etc.
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stocha stically reset to a given position with a resetting rate $r$. The mean squared displacements of the CTRW and L{e}vy walks with stochastic resetting are calculated, uncovering that the stochastic resetting always makes the CTRW process localized and L{e}vy walk diffuse slower. The asymptotic behaviors of the probability density function of Levy walk with stochastic resetting are carefully analyzed under different scales of $x$, and a striking influence of stochastic resetting is observed.
We derive a simple formula for the fluctuations of the time average around the thermal mean for overdamped Brownian motion in a binding potential U(x). Using a backward Fokker-Planck equation, introduced by Szabo, et al. in the context of reaction ki netics, we show that for ergodic processes these finite measurement time fluctuations are determined by the Boltzmann measure. For the widely applicable logarithmic potential, ergodicity is broken. We quantify the large non-ergodic fluctuations and show how they are related to a super-aging correlation function.
Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various processes, such as discrete-time Mar kov jump processes and overdamped Langevin dynamics. For underdamped dynamics, it has recently been reported that some modification is necessary for application of the TUR. In this study, we present a more generalized TUR, applicable to a system driven by a velocity-dependent force in the context of underdamped Langevin dynamics, by extending the theory of Vu and Hasegawa [preprint arXiv:1901.05715]. We show that our TUR accurately describes the trade-off properties of a molecular refrigerator (cold damping), Brownian dynamics in a magnetic field, and an active particle system.
Recent experiments (G. Ariel, et al., Nature Comm. 6, 8396 (2015)) revealed an intriguing behavior of swarming bacteria: they fundamentally change their collective motion from simple diffusion into a superdiffusive L{e}vy walk dynamics. We introduce a nonlinear non-Markovian persistent random walk model that explains the emergence of superdiffusive L{e}vy walks. We show that the alignment interaction between individuals can lead to the superdiffusive growth of the mean squared displacement and the power law distribution of run length with infinite variance. The main result is that the superdiffusive behavior emerges as a nonlinear collective phenomenon, rather than due to the standard assumption of the power law distribution of run distances from the inception. At the same time, we find that the repulsion/collision effects lead to the density dependent exponential tempering of power law distributions. This qualitatively explains experimentally observed transition from superdiffusion to the diffusion of mussels as their density increases (M. de Jager et al., Proc. R. Soc. B 281, 20132605 (2014)).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا