ترغب بنشر مسار تعليمي؟ اضغط هنا

Thickness Dependence of Magneto-transport Properties in Tungsten Ditelluride

258   0   0.0 ( 0 )
 نشر من قبل Xiaoyan Shi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the electronic structure of tungsten ditelluride (WTe$_2$) flakes with different thicknesses in magneto-transport studies. The temperature-dependent resistance and magnetoresistance (MR) measurements both confirm the breaking of carrier balance induced by thickness reduction, which suppresses the `turn-on behavior and large positive MR. The Shubnikov-de-Haas oscillation studies further confirm the thickness-dependent change of electronic structure of WTe$_2$ and reveal a possible temperature-sensitive electronic structure change. Finally, we report the thickness-dependent anisotropy of Fermi surface, which reveals that multi-layer WTe$_2$ is an electronic 3D material and the anisotropy decreases as thickness decreases.



قيم البحث

اقرأ أيضاً

149 - L. Palova , P. Chandra , K.M. Rabe 2007
We present a segregrated strain model that describes the thickness-dependent dielectric properties of ferroelectric films. Using a phenomenological Landau approach, we present results for two specific materials, making comparison with experiment and with first-principles calculations whenever possible. We also suggest a smoking gun benchtop probe to test our elastic scenario.
We report on a monotonic reduction of Curie temperature in dilute ferromagnetic semiconductor (Ga,Mn)As upon a well controlled chemical-etching/oxidizing thinning from 15 nm down to complete removal of the ferro- magnetic response. The effect already starts at the very beginning of the thinning process and is accompanied by the spin reorientation transition of the in-plane uniaxial anisotropy. We postulate that a negative gradient along the growth direction of self-compensating defects (Mn interstitial) and the presence of surface donor traps gives quantitative account on these effects within the p-d mean field Zener model with adequate mod- ifications to take a nonuniform distribution of holes and Mn cations into account. The described here effects are of practical importance for employing thin and ultrathin layers of (Ga,Mn)As or relative compounds in concept spintronics devices, like resonant tunneling devices in particular.
The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an a brupt decrease at the metamagnetic transition point, $T = T_m$ between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for $T geq 0$ K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of $T_m$, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement.
We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hier archical approach in density functional theory (DFT), with structural simulations performed with Generalized Gradient Approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the Meta-Generalized Gradient Approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium Greens function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gap, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.
Previous studies on the anomalous Hall effect in coplanar non-collinear antiferromagnets are revisited and extended to magneto-optic properties, namely magneto-optic Kerr effect (MOKE) and X-ray magnetic dichroism (XMCD). Starting from group-theoreti cal considerations the shape of the frequency-dependent conductivity tensor for various actual and hypothetical spin configurations in cubic and hexagonal Mn$_3X$ compounds is determined. Calculated MOKE and X-ray dichroism spectra are used to confirm these findings and to give estimates of the size of the effects. For Mn$_3$IrPt and Mn$_3$PtRh alloys the concentration dependence of the anomalous and spin Hall conductivity is studied in addition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا