ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs

111   0   0.0 ( 0 )
 نشر من قبل Jennifer Loe
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Support for lower precision computation is becoming more common in accelerator hardware due to lower power usage, reduced data movement and increased computational performance. However, computational science and engineering (CSE) problems require double precision accuracy in several domains. This conflict between hardware trends and application needs has resulted in a need for multiprecision strategies at the linear algebra algorithms level if we want to exploit the hardware to its full potential while meeting the accuracy requirements. In this paper, we focus on preconditioned sparse iterative linear solvers, a key kernel in several CSE applications. We present a study of multiprecision strategies for accelerating this kernel on GPUs. We seek the best methods for incorporating multiple precisions into the GMRES linear solver; these include iterative refinement and parallelizable preconditioners. Our work presents strategies to determine when multiprecision GMRES will be effective and to choose parameters for a multiprecision iterative refinement solver to achieve better performance. We use an implementation that is based on the Trilinos library and employs Kokkos Kernels for performance portability of linear algebra kernels. Performance results demonstrate the promise of multiprecision approaches and demonstrate even further improvements are possible by optimizing low-level kernels.



قيم البحث

اقرأ أيضاً

Support for lower precision computation is becoming more common in accelerator hardware due to lower power usage, reduced data movement and increased computational performance. However, computational science and engineering (CSE) problems require dou ble precision accuracy in several domains. This conflict between hardware trends and application needs has resulted in a need for mixed precision strategies at the linear algebra algorithms level if we want to exploit the hardware to its full potential while meeting the accuracy requirements. In this paper, we focus on preconditioned sparse iterative linear solvers, a key kernel in several CSE applications. We present a study of mixed precision strategies for accelerating this kernel on an NVIDIA V$100$ GPU with a Power 9 CPU. We seek the best methods for incorporating multiple precisions into the GMRES linear solver; these include iterative refinement and parallelizable preconditioners. Our work presents strategies to determine when mixed precision GMRES will be effective and to choose parameters for a mixed precision iterative refinement solver to achieve better performance. We use an implementation that is based on the Trilinos library and employs Kokkos Kernels for performance portability of linear algebra kernels. Performance results demonstrate the promise of mixed precision approaches and demonstrate even further improvements are possible by optimizing low-level kernels.
To accelerate the solution of large eigenvalue problems arising from many-body calculations in nuclear physics on distributed-memory parallel systems equipped with general-purpose Graphic Processing Units (GPUs), we modified a previously developed hy brid MPI/OpenMP implementation of an eigensolver written in FORTRAN 90 by using an OpenACC directives based programming model. Such an approach requires making minimal changes to the original code and enables a smooth migration of large-scale nuclear structure simulations from a distributed-memory many-core CPU system to a distributed GPU system. However, in order to make the OpenACC based eigensolver run efficiently on GPUs, we need to take into account the architectural differences between a many-core CPU and a GPU device. Consequently, the optimal way to insert OpenACC directives may be different from the original way of inserting OpenMP directives. We point out these differences in the implementation of sparse matrix-matrix multiplications (SpMM), which constitutes the main cost of the eigensolver, as well as other differences in the preconditioning step and dense linear algebra operations. We compare the performance of the OpenACC based implementation executed on multiple GPUs with the performance on distributed-memory many-core CPUs, and demonstrate significant speedup achieved on GPUs compared to the on-node performance of a many-core CPU. We also show that the overall performance improvement of the eigensolver on multiple GPUs is more modest due to the communication overhead among different MPI ranks.
Gauss-Seidel (GS) relaxation is often employed as a preconditioner for a Krylov solver or as a smoother for Algebraic Multigrid (AMG). However, the requisite sparse triangular solve is difficult to parallelize on many-core architectures such as graph ics processing units (GPUs). In the present study, the performance of the traditional GS relaxation based on a triangular solve is compared with two-stage variants, replacing the direct triangular solve with a fixed number of inner Jacobi-Richardson (JR) iterations. When a small number of inner iterations is sufficient to maintain the Krylov convergence rate, the two-stage GS (GS2) often outperforms the traditional algorithm on many-core architectures. We also compare GS2 with JR. When they perform the same number of flops for SpMV (e.g. three JR sweeps compared to two GS sweeps with one inner JR sweep), the GS2 iterations, and the Krylov solver preconditioned with GS2, may converge faster than the JR iterations. Moreover, for some problems (e.g. elasticity), it was found that JR may diverge with a damping factor of one, whereas two-stage GS may improve the convergence with more inner iterations. Finally, to study the performance of the two-stage smoother and preconditioner for a practical problem, %(e.g. using tuned damping factors), these were applied to incompressible fluid flow simulations on GPUs.
We study the use of Krylov subspace recycling for the solution of a sequence of slowly-changing families of linear systems, where each family consists of shifted linear systems that differ in the coefficient matrix only by multiples of the identity. Our aim is to explore the simultaneous solution of each family of shifted systems within the framework of subspace recycling, using one augmented subspace to extract candidate solutions for all the shifted systems. The ideal method would use the same augmented subspace for all systems and have fixed storage requirements, independent of the number of shifted systems per family. We show that a method satisfying both requirements cannot exist in this framework. As an alternative, we introduce two schemes. One constructs a separate deflation space for each shifted system but solves each family of shifted systems simultaneously. The other builds only one recycled subspace and constructs approximate corrections to the solutions of the shifted systems at each cycle of the iterative linear solver while only minimizing the base system residual. At convergence of the base system solution, we apply the method recursively to the remaining unconverged systems. We present numerical examples involving systems arising in lattice quantum chromodynamics.
The linear equations that arise in interior methods for constrained optimization are sparse symmetric indefinite and become extremely ill-conditioned as the interior method converges. These linear systems present a challenge for existing solver frame works based on sparse LU or LDL^T decompositions. We benchmark five well known direct linear solver packages using matrices extracted from power grid optimization problems. The achieved solution accuracy varies greatly among the packages. None of the tested packages delivers significant GPU acceleration for our test cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا