ﻻ يوجد ملخص باللغة العربية
In Dou et al. (2021), we introduced the Fundamental Formation Relation (FFR), a tight relation between specific SFR (sSFR), H$_2$ star formation efficiency (SFE$_{rm H_2}$), and the ratio of H$_2$ to stellar mass. Here we show that atomic gas HI does not follow a similar FFR as H$_2$. The relation between SFE$_{rm HI}$ and sSFR shows significant scatter and strong systematic dependence on all of the key galaxy properties that we have explored. The dramatic difference between HI and H$_2$ indicates that different processes (e.g., quenching by different mechanisms) may have very different effects on the HI in different galaxies and hence produce different SFE$_{rm HI}$-sSFR relations, while the SFE$_{rm H_2}$-sSFR relation remains unaffected. The facts that SFE$_{rm H_2}$-sSFR relation is independent of other key galaxy properties, and that sSFR is directly related to the cosmic time and acts as the cosmic clock, make it natural and very simple to study how different galaxy populations (with different properties and undergoing different processes) evolve on the same SFE$_{rm H_2}$-sSFR $sim t$ relation. In the gas regulator model (GRM), the evolution of a galaxy on the SFE$_{rm H_2}$-sSFR($t$) relation is uniquely set by a single mass-loading parameter $lambda_{rm net,H_2}$. This simplicity allows us to accurately derive the H$_2$ supply and removal rates of the local galaxy populations with different stellar masses, from star-forming galaxies to the galaxies in the process of being quenched. This combination of FFR and GRM, together with the stellar metallicity requirement, provide a new powerful tool to study galaxy formation and evolution.
Modern theories of galaxy formation predict that galaxies impact on their gaseous surroundings, playing the fundamental role of regulating the amount of gas converted into stars. While star-forming galaxies are believed to provide feedback through ga
We compare predictions of large-scale cosmological hydrodynamical simulations for neutral hydrogen absorption signatures in the vicinity of 1e11 - 1e12.5 MSun haloes with observational measurements. Two different hydrodynamical techniques and a varie
We present a study of the environment of 27 z=3-4.5 bright quasars from the MUSE Analysis of Gas around Galaxies (MAGG) survey. With medium-depth MUSE observations (4 hours on target per field), we characterise the effects of quasars on their surroun
Large surveys of the local Universe have shown that galaxies with different intrinsic properties, such as colour, luminosity and morphological type display a range of clustering amplitudes. Galaxies are therefore not faithful tracers of the underlyin
This paper presents the analysis of optical integral field spectra for the HI eXtreme (HIX) galaxy sample. HIX galaxies host at least 2.5 times more atomic gas (HI) than expected from their optical R-band luminosity. Previous examination of their sta