ﻻ يوجد ملخص باللغة العربية
This paper presents the analysis of optical integral field spectra for the HI eXtreme (HIX) galaxy sample. HIX galaxies host at least 2.5 times more atomic gas (HI) than expected from their optical R-band luminosity. Previous examination of their star formation activity and HI kinematics suggested that these galaxies stabilise their large HI discs (radii up to 94 kpc) against star formation due to their higher than average baryonic specific angular momentum. A comparison to semi-analytic models further showed that the elevated baryonic specific angular momentum is inherited from the high spin of the dark matter host. In this paper we now turn to the gas-phase metallicity as well as stellar and ionised gas kinematics in HIX galaxies to gain insights into recent accretion of metal-poor gas or recent mergers. We compared the stellar, ionised, and atomic gas kinematics, and examine the variation in the gas-phase metallicity throughout the stellar disc of HIX galaxies. We find no indication for counter-rotation in any of the components, the central metallicities tend to be lower than average, but as low as expected for galaxies of similar HI mass. Metallicity gradients are comparable to other less HI-rich, local star forming galaxies. We conclude that HIX galaxies show no conclusive evidence for recent major accretion or merger events. Their overall lower metallicities are likely due to being hosted by high spin halos, which slows down their evolution and thus the enrichment of their interstellar medium.
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-r
We present a detailed exploration of the stellar mass vs. gas-phase metallicity relation (MZR) using integral field spectroscopy data obtained from ~1000 galaxies observed by the SAMI Galaxy survey. These spatially resolved spectroscopic data allow u
We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M$_R$ ~ -13. We use the Dopita et al. (2013) metallicity calibrations to calibrate the relation for all of the data in this
We present a new model for the evolution of gas phase metallicity gradients in galaxies from first principles. We show that metallicity gradients depend on four ratios that collectively describe the metal equilibration timescale, production, transpor
The study of 21cm line observations of atomic hydrogen allows detailed insight into the kinematics of spiral galaxies. We use sensitive high-resolution VLA data from The HI Nearby Galaxy Survey (THINGS) to search for radial gas flows primarily in the