ﻻ يوجد ملخص باللغة العربية
Video watermarking embeds a message into a cover video in an imperceptible manner, which can be retrieved even if the video undergoes certain modifications or distortions. Traditional watermarking methods are often manually designed for particular types of distortions and thus cannot simultaneously handle a broad spectrum of distortions. To this end, we propose a robust deep learning-based solution for video watermarking that is end-to-end trainable. Our model consists of a novel multiscale design where the watermarks are distributed across multiple spatial-temporal scales. It gains robustness against various distortions through a differentiable distortion layer, whereas non-differentiable distortions, such as popular video compression standards, are modeled by a differentiable proxy. Extensive evaluations on a wide variety of distortions show that our method outperforms traditional video watermarking methods as well as deep image watermarking models by a large margin. We further demonstrate the practicality of our method on a realistic video-editing application.
Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, application of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a d
The advancement in digital technologies have made it possible to produce perfect copies of digital content. In this environment, malicious users reproduce the digital content and share it without compensation to the content owner. Content owners are
Digital image watermarking is the process of embedding and extracting watermark covertly on a carrier image. Incorporating deep learning networks with image watermarking has attracted increasing attention during recent years. However, existing deep l
Motivated by the prowess of deep learning (DL) based techniques in prediction, generalization, and representation learning, we develop a novel framework called DeepQoE to predict video quality of experience (QoE). The end-to-end framework first uses
In this paper, we formulate the collaborative multi-user wireless video transmission problem as a multi-user Markov decision process (MUMDP) by explicitly considering the users heterogeneous video traffic characteristics, time-varying network conditi