ترغب بنشر مسار تعليمي؟ اضغط هنا

ReDMark: Framework for Residual Diffusion Watermarking on Deep Networks

415   0   0.0 ( 0 )
 نشر من قبل Ali Emami
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the rapid growth of machine learning tools and specifically deep networks in various computer vision and image processing areas, application of Convolutional Neural Networks for watermarking have recently emerged. In this paper, we propose a deep end-to-end diffusion watermarking framework (ReDMark) which can be adapted for any desired transform space. The framework is composed of two Fully Convolutional Neural Networks with the residual structure for embedding and extraction. The whole deep network is trained end-to-end to conduct a blind secure watermarking. The framework is customizable for the level of robustness vs. imperceptibility. It is also adjustable for the trade-off between capacity and robustness. The proposed framework simulates various attacks as a differentiable network layer to facilitate end-to-end training. For JPEG attack, a differentiable approximation is utilized, which drastically improves the watermarking robustness to this attack. Another important characteristic of the proposed framework, which leads to improved security and robustness, is its capability to diffuse watermark information among a relatively wide area of the image. Comparative results versus recent state-of-the-art researches highlight the superiority of the proposed framework in terms of imperceptibility and robustness.



قيم البحث

اقرأ أيضاً

254 - Xin Zhong , Frank Y. Shih 2019
Digital image watermarking is the process of embedding and extracting watermark covertly on a carrier image. Incorporating deep learning networks with image watermarking has attracted increasing attention during recent years. However, existing deep l earning-based watermarking systems cannot achieve robustness, blindness, and automated embedding and extraction simultaneously. In this paper, a fully automated image watermarking system based on deep neural networks is proposed to generalize the image watermarking processes. An unsupervised deep learning structure and a novel loss computation are proposed to achieve high capacity and high robustness without any prior knowledge of possible attacks. Furthermore, a challenging application of watermark extraction from camera-captured images is provided to validate the practicality as well as the robustness of the proposed system. Experimental results show the superiority performance of the proposed system as comparing against several currently available techniques.
Video watermarking embeds a message into a cover video in an imperceptible manner, which can be retrieved even if the video undergoes certain modifications or distortions. Traditional watermarking methods are often manually designed for particular ty pes of distortions and thus cannot simultaneously handle a broad spectrum of distortions. To this end, we propose a robust deep learning-based solution for video watermarking that is end-to-end trainable. Our model consists of a novel multiscale design where the watermarks are distributed across multiple spatial-temporal scales. It gains robustness against various distortions through a differentiable distortion layer, whereas non-differentiable distortions, such as popular video compression standards, are modeled by a differentiable proxy. Extensive evaluations on a wide variety of distortions show that our method outperforms traditional video watermarking methods as well as deep image watermarking models by a large margin. We further demonstrate the practicality of our method on a realistic video-editing application.
The advancement in digital technologies have made it possible to produce perfect copies of digital content. In this environment, malicious users reproduce the digital content and share it without compensation to the content owner. Content owners are concerned about the potential loss of revenue and reputation from piracy, especially when the content is available over the Internet. Digital watermarking has emerged as a deterrent measure towards such malicious activities. Several methods have been proposed for copyright protection and fingerprinting of digital images. However, these methods are not applicable to text documents as these documents lack rich texture information which is abundantly available in digital images. In this paper, a framework (mPDF) is proposed which facilitates the usage of digital image watermarking algorithms on text documents. The proposed method divides a text document into texture and non-texture blocks using an energy-based approach. After classification, a watermark is embedded inside the texture blocks in a content adaptive manner. The proposed method is integrated with five known image watermarking methods and its performance is studied in terms of quality and robustness. Experiments are conducted on documents in 11 different languages. Experimental results clearly show that the proposed method facilitates the usage of image watermarking algorithms on text documents and is robust against attacks such as print & scan, print screen, and skew. Also, the proposed method overcomes the drawbacks of existing text watermarking methods such as manual inspection and language dependency.
Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.
As an efficient watermark attack method, geometric distortions destroy the synchronization between watermark encoder and decoder. And the local geometric distortion is a famous challenge in the watermark field. Although a lot of geometric distortions resilient watermarking schemes have been proposed, few of them perform well against local geometric distortion like random bending attack (RBA). To address this problem, this paper proposes a novel watermark synchronization process and the corresponding watermarking scheme. In our scheme, the watermark bits are represented by random patterns. The message is encoded to get a watermark unit, and the watermark unit is flipped to generate a symmetrical watermark. Then the symmetrical watermark is embedded into the spatial domain of the host image in an additive way. In watermark extraction, we first get the theoretically mean-square error minimized estimation of the watermark. Then the auto-convolution function is applied to this estimation to detect the symmetry and get a watermark units map. According to this map, the watermark can be accurately synchronized, and then the extraction can be done. Experimental results demonstrate the excellent robustness of the proposed watermarking scheme to local geometric distortions, global geometric distortions, common image processing operations, and some kinds of combined attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا